
Enabling Co-located Ad-hoc Collaboration on Shared Displays

Peter Hutterer and Bruce H. Thomas
HxI Initiative – Project [braccetto]

Wearable Computer Labs
School of Computer and Information Science

University of South Australia
Mawson Lakes 5095, South Australia

{peter|thomas}@cs.unisa.edu.au

Abstract

All major desktop environments are designed around the
assumption of having a single system cursor and a single
keyboard. Co-located multi-user interaction on a standard
desktop requires users to physically hand over the
devices. Existing collaboration applications require
complicated and limiting setups and no collaboration
application or toolkit supports ad-hoc transition from a
traditional single-user desktop to a multi-user
collaboration environment without restarting applications.

Our Multi-Pointer X server (MPX) allows easy transition
between a single-user desktop and a multi-user
collaboration environment. Pointer devices and keyboards
can be added and removed at any time. Independent
cursors and keyboard foci for these devices allow users to
interact with and type into multiple applications
simultaneously. MPX is compatible with any legacy X
application and resolves ambiguity in legacy APIs using
the novel “ClientPointer” principle. MPX also provides
new APIs for multi-user applications and thus enables
fluid integration of single-user and multi-user
environments.

Keywords: CSCW, GWWS, windowing systems. .

1 Introduction

Collaboration is often spontaneous and unstructured, and
this is particularly true when colleagues in the work place
ask for impromptu help. When the colleagues then focus
on a task that is represented on a traditional workstation,
they need to collaborate on a single screen with a single
set of mouse and keyboard devices. This restriction
requires the users to pass the physical devices between
themselves.

Several collaborative applications and toolkits have been
introduced in the past (Hourcade 1999, Hutterer 2006,
Izadi 2003, Tse 2004), focusing on planned and
structured collaboration. Our Multi-Pointer X (MPX)

Copyright (C) 2008, Australian Computer Society, Inc. This
paper appeared at the 9th Australasian User Interface
Conference (AUIC2008), Wollongong, NSW, Australia,
January 2008. Conferences in Research and Practice in
Information Technology, Vol. 76. B. Plimmer, G. Weber, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

turns the desktop into a single display groupware
environment, with the option of adding devices on the fly.
This groupware environment can run traditional single-
user applications and multi-user aware applications
simultaneously (Hutterer 2007b).

MPX is not a collaboration application. The collaboration
features are integrated into the windowing system,
allowing MPX to provide ad-hoc collaboration across the
whole desktop as well as collaboration within a single
application. This low-level integration of these features
makes the technology available to any graphical
application, regardless of application support. Multi-user
functionality can be utilised in traditional single-user
applications as well as novel multi-user software.

Imagine a scenario where a user, Bob, is required to
collect information about a specific topic. Bob uses MPX
as his windowing system. After a few hours of browsing
the web he asks Alice for help. At this point in time, Bob
has two browser windows and a word processor open on
his desktop. To help Bob, Alice needs to interact with
Bob’s desktop. She connects a mouse to Bob’s host
computer and a second cursor appears. Alice browses the
web in one of the browser windows using her mouse. Bob
continues to use his mouse and keyboard to write the
summary. Bob can also interact with the same browser
window or any other window at the same time. When
Bob’s question has been answered, Alice disconnects her
mouse and Bob goes back to working in single-user
mode.

This scenario highlights the benefits of support for
multiple independent devices across multiple legacy
applications. It also shows how a smooth transition
between a traditional single-user desktop and a
collaboration environment enables ad-hoc collaboration.

MPX is currently the only technology that makes the
above scenario possible. Traditional collaboration
applications (Bier 1991, Izadi 2003) and toolkits
(Hourcade 1999, Hutterer 2006, Tse 2004) provide users
with features such as multiple input devices, floor control
and tools to increase awareness. At the same time, they
restrict the users’ ability to interact with traditional
desktop applications. Only a limited set of applications at
a time can provide groupware features. Outside of these
applications, multi-user interaction is not possible. A
simple task such as reading emails can require a
shutdown of the collaboration environment.

MPX is a modification of the X.org X server1 to support
multiple cursors and multiple keyboard foci. MPX is
compatible with any application that runs on a current X
server. In fact, if there is only one pair of input devices
connected, MPX is identical to a standard X server. We
can transition between a traditional single-user desktop to
a multi-user environment just by adding or removing
input devices. Users can continue to use well-established
applications and even their standard desktop
environments (e.g. GNOME). MPX is an important step
in the transition from the single-pointer single-keyboard
paradigm that dominates current user interfaces to true
multi-user environments.

A detailed description of MPX has been presented
elsewhere (Hutterer 2007b). This paper presents recent
enhancements to MPX to provide multiple independent
keyboard foci, support the dynamic addition of cursors
and keyboard foci for hotplugged devices, and resolve
ambiguities in single-user APIs. These enhancements
allow fluid transition from single-user to multi-user mode
without restarting any applications. We will also present
two prototype applications that demonstrate how the
multi-user features in MPX can be utilised. In Hutterer
and Thomas (Hutterer 2007a), a brief overview of these
concepts was presented, whereas this paper provides a
detailed descriptions of the concepts and implementations
issues.

2 Related Work

The benefit of multiple input devices is well researched.
Stewart et al. (Stewart 1998) found a preference towards
individual input devices when users collaborate using
Single Display Groupware (SDG). Other research showed
that domination of one user is less prevalent when users
have equal access to a user interface (Inkpen 1997,
Stanton 2003). Pawar et al. found that one mouse per user
can improve children’s ability to memorise words (Pawar
2007), while at the same time reducing boredom and
distraction. Grudin stated that support for everyday
applications is a requirement for the adoption of
groupware (Grudin 1994), yet few groupware toolkits
allow collaboration in legacy applications on a single
display.

Several applications and toolkits focus on enabling
multiple input devices. MMM (Bier 1991) was an early
system to support four simultaneous users on a single
display. SDGToolkit (Tse 2004) and MID (Hourcade
1999) are high-level toolkits in C# and Java for
groupware applications. They are targeted towards new
applications that need to support multiple users. The
SDGToolkit has been successfully used at a university
course to create novel applications (Greenberg 2007).
However, the SDGToolkit does not support the execution
of multiple collaborative applications simultaneously.
The MIDDesktop (Shoemaker 2001) utilised MID to
provide a desktop-like environment to execute several
Java applets simultaneously. TIDL (Hutterer 2006)
requires legacy Java applications to be started by a

1 http://www.x.org

custom application loader to provide them with a multi-
user context. TIDL cannot provide multi-user
functionality to already running applications. Both
MIDDesktop and TIDL cannot utilise applications not
written in Java. Dynamo (Izadi 2003) provides a multi-
user environment focusing on media sharing. Legacy
applications are supported through inter-process
communication (IPC) mechanisms. The Dynamo desktop
is focused around multiple users interacting with media
assets, but the dependency on IPC restricts the use of
those applications that do not support those interfaces.

Focusing only on multi-user interaction is a common
caveat of groupware applications and toolkits. Instant
transition between a single-user and multi-user
environment without the need to restart any applications
is not supported by any current technology other than
MPX.

On the other hand, multi-touch hardware is becoming
more popular. The e-Beam pen devices (http://www.e-
beam.com) allow two pens to be used simultaneously.
Han (Han 2005) presented a multi-touch display
technology based on frustrated internal reflection. This
technology supports a theoretically unlimited number of
touch points at a very low cost. Wilson (Wilson 2004)
used stereo cameras to detect touch-points on a
transparent touch screen. The absence of a diffuser allows
for high-resolution images and the possibility of user
identification through face recognition. The
DiamondTouch (Dietz 2001) technology supports user
identification using the body’s electrical resistance. The
DiamondSpin toolkit (Shen 2004) was developed for use
with the DiamondTouch and allows applications to freely
rotate their windows. DiamondSpin was for example used
by the UbiTable (Shen 2003) to allow ad-hoc sharing and
viewing of documents stored on users’ laptops. When
they walk up to the DiamondTouch table, their laptop
connects to the software running on the tabletop display
and provides them with areas to view and exchange their
private data. DiamondSpin provides Java APIs for novel
applications and can support legacy applications if they
are started from within a specific context. Applications
not written in Java are not supported.

The Soap input device (Baudisch 2006) is a modified
wireless mouse that can be held and controlled in one
hand. The wireless technology and indirect nature of the
device easily allows for multiple users to interact
simultaneously with a shared whiteboard. Yet these users
would be restricted by the windowing system to a single
system cursor. The everyday desktop remains restricted to
a single user.

MPX is the first GroupWare Windowing System
(GWWS) (Hutterer 2007b). Traditional groupware
toolkits and applications had to access the hardware
directly, causing race conditions between different
toolkits. A GWWS provides a unified way for toolkits
and applications to access multi-user functionality.
Previously, we described how MPX supported multiple
independent system cursors, an extensive floor control
mechanism and annotation overlays in connection with
our Multi-Pointer Window Manager (MPWM). (Hutterer
2007b)

MPX is not an implementation of a new windowing
system. MPX changes the input subsystem and event
delivery of the X.org X server, the de-facto standard for
X server implementations. As a result, it is compatible to
any X application and can be used as a drop-in
replacement for the standard X server. X is the standard
windowing system for virtually every graphical desktop
under Unix, BSD and Linux. A replication of MPX’s
functionality in the windowing systems of Microsoft
Windows and Apple Mac OS X will require internal
device-based state tracking for all input events and a
revision and modification of the windowing system APIs.

3 Ad-hoc Collaboration on the Desktop
A GWWS needs to support the hotplugging of input
devices to support ad-hoc collaboration. By adding and
removing input devices users can transition fluidly
between a single-user desktop and a groupware
environment. Multiple input devices provide the ability
for multiple users to interact simultaneously with any
number of applications. With such a GWWS, users can
set up an impromptu collaboration environment on any
workstation.

MPX can support up to 128 (7 bit) independent input
devices. Devices can be pointing devices (mice,
trackballs, pens, touch screens, etc.) or keyboard devices.
For the scope of this paper, we will refer to any type of
pointing device as a pointer. The visible representation on

the screen of such a pointer will be referred to as a
cursor.

In traditional windowing systems, the keyboard input
focus is usually set when the user clicks into a window.
All keyboard events are then delivered to the application
that obtained the input focus. With the availability of
multiple cursors and multiple keyboard foci, MPX can
pair each keyboard’s focus with one distinct cursor and
thus provide one focus per keyboard. A pair of input
devices behaves exactly like the traditional mouse-
keyboard combination, with the cursor controlling the
paired keyboard’s focus. MPX delivers the events based
on a device’s focus. In Figure 1, pointer and keyboard 2
have their focus set to application A. At the same time,
pointer and keyboard 4 have their focus set to B. If one of
these devices emits events, these events are only sent to
the respective application. By keeping the event streams
separate, MPX allows simultaneous interaction with
multiple applications, even with legacy applications. This
gives users the ability to work independently. The legacy
applications do not know that there are multiple keyboard
foci or multiple cursors.

All major operating systems support input device
hotplugging of pointers and keyboards, but windowing
systems do not utilise this functionality. Additional
pointers are always merged into the single system cursor,
and additional keyboards will share a single input focus.
As a result, adding additional input devices does not
provide any collaboration features in traditional
windowing systems.

MPX creates a new additional cursors and keyboard foci
for devices hotplugged at runtime. When a new keyboard
is plugged in, MPX automatically pairs it with the first
available unpaired pointer (see Figure 2a). This automatic
pairing for hot-plugged devices directly benefits users. A
user only needs to plug in a mouse and a keyboard, a new
cursor and a new keyboard focus become available and
the user can start working immediately, without the need
for further configuration. If all available pointers are
already paired, the first pointer is chosen (see Figure 2b).
If no physical pointer is connected to the host computer,
the keyboard is paired with a virtual pointer to ensure
data consistency (see Figure 2c). MPX also exposes an
API to change the device pairing at any time. Each
keyboard device can be paired with one pointer only but a
pointer may be associated with multiple keyboards (1:N

Figure 1. MPX delivers the event to the
applications that has the device’s focus.

Figure 2. Automatic pairing of hot-plugged devices. a) new keyboard with available unpaired pointer, b) new
keyboard with no unpaired pointer available, c) keyboard with no physical pointer connected.

pairing). Whenever a device pairing is changed through
the API or by physically adding or removing devices,
applications are notified about the new pairing. The list of
pointer-keyboard pairings can be queried at any time,
allowing applications to adjust their interfaces or
interaction methods based on the current device pairing.

Modifying the keyboard-pointer pairing has wide-
reaching consequences on user interaction. For example,
if the pairing is changed at an inappropriate time, a user
typing a password may suddenly end up typing it into a
text field visible to other users. For this reason, only one
application at a time can be authorized to change device
pairing. The window manager is arguably the application
with the biggest influence on the user interface. It is
responsible for window placement, focus changes and the
minimizing and maximizing of the windows. We believe
that the window manager is the ideal application to
administer device pairing. Our experimental window
manager MPWM provides a default device pairing
mechanism where users can click on the icon of a
keyboard to pair it with their pointer device. However, we
acknowledge that further research and experimentation is
needed to develop a less interruptive pairing interface. A
simple method to explicitly pair devices is to unplug both
devices, and immediately plug both devices back into the
computer.

Unplugging a pointer that is paired to a keyboard will
release the keyboard’s pairing. As a result, keyboard
events will not be sent to any application and the
keyboard needs to be manually paired with a different
pointer. MPX does not automatically re-pair a device for
security reasons. Automatic re-pairing may also result in
two keyboards being paired with a single pointer, which
leads to interference when both users type
simultaneously.

The support for hotplugged input devices directly in the
windowing system leads to a new perception in the user
interface. Instead of a single-user environment, it is now a
true multi-user environment with the number of input
devices varying over time. This number can even be zero,
when all physical devices are unplugged. Future
applications must be developed with this in mind.
However, legacy applications assume the existence of one
pointer and one keyboard. MPX internally keeps a virtual

pointer and a virtual keyboard. These virtual devices are
only utilised when legacy application request information
that requires data from a pointer and/or keyboard and
there is no physical device connected to the host
computer. The virtual devices never send events to the
applications and are ignored whenever MPX needs to
traverse the internal device lists for processing.

Collaboration is not limited to desktop computers. For
example, tabletops and shared whiteboards are commonly
used for collaboration on a single display (Ishii 1992,
Kruger 2002, Wu 2003), yet they require custom setups
and depend on prototype toolkits (Esenther 2002, Shen
2004). With a GWWS like MPX, these displays can
provide the same environment as a desktop computer.
This allows executing both collaborative applications as
well as traditional desktop single-user applications, thus
blurring the difference between a desktop computer and a
shared collaborative surface. With hotplugging support in
the GWWS, users can just naturally walk up to a table or
whiteboard and start interacting.

Ad-hoc collaboration on a desktop can suffer from a lack
of screen real estate. MPX supports both multi-monitor
graphic cards and also multiple graphics cards in one host
computer, allowing for setups with several display
devices. Grudin found in a survey that multiple monitors
were often used as secondary displays and not necessarily
as extension of the available screen size (Grudin 2001).
He noted that windows were rarely maximised across two
monitors. Such behaviour is beneficial for ad-hoc
collaboration. Two users could utilise one monitor each,
and collaborate with minimal interference, while at the
same time being able to access the peer’s screen estate.

4 Resolving API Ambiguity
All traditional single-user applications are designed for an
infrastructure that provides a single system cursor and a
single keyboard focus. Applications communicate with
the X server by sending requests over a reliable socket.
Most of the communication is part of the core X protocol,
but several protocol extensions are available. About one
quarter of the requests in the core X protocol becomes
ambiguous if more than one cursor and/or more than one
keyboard focus are available. A typical example for such
an ambiguity is an application querying the position of
the cursor. In MPX, there may be multiple cursors on the
screen.

Our novel ClientPointer principle resolves these
ambiguities. Upon application start-up, the windowing
system assigns one distinct pointer to the application.
Whenever an application issues an ambiguous request,
this ClientPointer is chosen as the default device. If a
request requires keyboard data, the keyboard that is
paired with the ClientPointer is chosen. Figure 3
demonstrates the ClientPointer principle. Application A
has pointer 1 set as ClientPointer, application B pointer 4.
When A issues an ambiguous request (say get cursor
position), MPX uses pointer 1 to provide the necessary
data (dashed line). When B issues an ambiguous request
(say warp cursor), MPX selects pointer 4 (dotted line). If
B’s request requires keyboard data, MPX selects the

Figure 3. Illustration of the ClientPointer principle.

keyboard paired with pointer 4 (dotted line). No keyboard
is paired with pointer 1 and if A issues a request that
requires keyboard data, MPX provides data from a virtual
keyboard that is in a neutral state. Note that although
pointers 1 and 4 are set as ClientPointers, pointers 2 and 3
can nevertheless interact with both applications (solid
lines).

The xeyes application shown in Figure 4 queries the
cursor coordinates and then adjusts the eyes to look at the
cursor. In Figure 4, two xeyes have different
ClientPointer settings and thus look at two different
cursors. The ClientPointer can be set at any time using
Xlib functions. For the same reasons as given above, we
believe that the window manager should be responsible
for adjusting the ClientPointer. Our window manager
changes the ClientPointer upon click into a window. For
exotic management of ClientPointer rules, explicit
applications may be developed to handle these cases.

Previous research prototypes used the notion of a system
cursor and virtual cursors (Hourcade 1999, Hutterer 2006,
Tse 2004). The ClientPointer principle is different. In
MPX, all cursors are true system cursors. Each
application can have a different ClientPointer, and any
input device can interact with the application regardless
of the ClientPointer setting (solid lines in Figure 2). The
ClientPointer only gets preference over the other pointer
devices when an application issues an ambiguous request.
If an application never issues such a request, all pointer
devices are equal.

The ClientPointer principle is designed to resolve
ambiguities for legacy applications. Multi-user
applications do not need to use ambiguous single-user
APIs and thus do not depend on the ClientPointer setting.

The ClientPointer principle ensures valid data is provided
to an application, but it depends on the application how to
process the data. Some features such as typing into two
text fields simultaneously within one application need
active support by the application or toolkit. These

applications need to be adapted to comply with the new
multi-device paradigm. However, Tse et al. (Tse 2004)
noticed that even when users work on the same task they
consciously and unconsciously avoid interference. With
this in mind and the existing proper floor control in MPX
(Hutterer 2007b), we believe that many legacy
applications will not need modifications.

5 Grab ownership

The standard X APIs allow an application to “grab” the
pointer and/or the keyboard. During such a grab, only the
grabbing application will get events from the device,
regardless of the device’s focus or the pointer’s location.
Grabs are heavily used for popup menus. For example,
while a popup menu is visible, a click on the menu itself
results in the appropriate action, whereas a click outside
of the menu will cause the menu to disappear. A “pointer
grab” ensures that the event is delivered to the popup
menu, regardless of the click location. Only one
application can have a grab on a given device at a time.

Grabs are designed on the assumption that there is only
one set of input devices. In MPX, if one pointer were to
send an event after another pointer caused a popup menu
to appear, the popup menu may disappear again
immediately. This interrupts the user’s interaction. To
avoid this, we have introduced the notion of “grab
ownership” (see Figure 5). While a grab is active (dashed
line), no other device can send events to the grabbing
application (dotted lines). At the same time, other devices
can interact with all other applications (solid lines).

X allows active grabs and passive grabs. Active grabs are
requested by the application and last until the application
requests to “ungrab” the pointer/keyboard. A legacy
application does not explicitly specify the device to grab,
and in MPX these active grabs default to the
ClientPointer, or the keyboard paired with the
ClientPointer respectively.

Passive grabs on the other hand are requested only once
and stored in the X server. They are activated when a
particular button or key (as defined by the application) is
pressed, and the grab is deactivated again when this
button or key is released. Passive grabs are heavily used
for drop-down and popup menus, as well as window

Figure 4. Screenshot of MPX with four legacy applications
utilizing the ClientPointer principle.

Figure 5. Grab ownership for legacy applications.

manager interaction. Since passive grabs are activated in
response to an interaction with a GUI element, we
introduced grab ownership with flexible devices for
passive grabs. Instead of selecting the ClientPointer,
MPX switches the grab device upon activation to reflect
the device causing the passive grab to activate. If the
application requests an active grab while a passive grab is
active, the active grab is issued on the switched device.
This ensures interface consistency.

Grab ownership only applies to legacy applications.
Multi-user applications know about the existence of
multiple devices and can explicitly specify which device
to grab. In this case, the notion of a grab is different (see
Figure 6). For legacy applications, activating a grab
means that only one device can interact with the grabbing
application. For multi-user applications, an active grab on
a device (dashed line) ensures that any event from this
device being sent only to the grabbing application, and no
other application can receive events from this device for
the duration of the grab. At the same time, the application
(and any other application) can still receive events from a
non-grabbed device (solid lines).

Grab ownership allows multiple popup windows
simultaneously, albeit only across multiple applications.
As mentioned before, it depends on the application to
process input events. Multiple simultaneous popup
windows within the same application require application
support and are thus not possible for legacy applications.

6 The MalaMinya and MM2 drawing
applications

We implemented two multi-user drawing editors to
demonstrate MPX’s support for single-display groupware
applications. The first application, “MalaMinya”, is a
simple bitmap drawing tool that allows several users to
interact simultaneously on the canvas (see Figure 7). The
drawing canvas is surrounded by a number of colour
buttons. One home area is provided for each user, with
buttons to select the pen tool, the eraser tool and to clean
the whole canvas. The home areas are locked to their
respective user using MPX’s floor control mechanism. A
user’s cursor is appended with a small icon, and this icon
is also displayed next to the user’s home area. The home

areas are arranged around the canvas to accommodate for
tabletop users and their physical position around the
table.

A selection of a tool or a colour only affects this user’s
state, allowing for different tools and colours for each
user. All interaction with MalaMinya can happen
simultaneously. For example, while one user may be
drawing on the canvas, another user may be erasing a part
of the canvas. Other users may simultaneously change
their tools and/or colours and start drawing.

The second drawing tool, “MM2”, provides vector-based
shapes (lines, rectangles, ellipses) to be put on the canvas
(see Figure 8). Shapes can be manipulated once on the
canvas. Each user has a free-floating home area for tool
selection. It displays buttons to select a shape, change
colour and adjust line thickness. Each home area is only
accessible by the respective user and can be moved
around freely on the canvas. MM2 accommodates for
hot-plugged devices and adds and removes home areas as
new pointer devices are plugged in.

MalaMinya and MM2 use two different design choices.
MalaMinya places all user interface elements around the
canvas. MM2 on the other hand provides all tools in the
moveable home areas. We expect different interaction for
each of the tools when employed on a tabletop display.
MalaMinya requires users to reach across the table to
activate a control, potentially interfering with other user's
personal space. MM2 on the other hand allows private
works. Each user can drag the home area into their
personal space and interact with the drawing area,
without interfering with others. MalaMinya and MM2
have been tested with up to eight and four pointers
respectively.

Both MalaMinya and MM2 are prototype applications
and demonstrate how to write groupware applications for
MPX. The novelty about our drawing tools is that the
integration of MPX into the windowing system allows
them to be used simultaneously with any other
application on the screen. For example, three users could
sketch in MalaMinya, while four others assemble a

Figure 6. Device grabs as applicable for multi-user
applications.

Figure 7. Screenshot of the MalaMinya drawing tool.

drawing in MM2 and two more users use a legacy word
processor and a web browser.

7 Conclusion

In this paper we presented how MPX enables fluid
transition between a single-user and a multi-user
environment by supporting input device hotplugging. The
low-level integration of collaboration features allows any
X application to be utilised in a multi-user context. MPX
can be used as a drop-in replacement for a traditional X
Server. Additional cursors and keyboard foci are added
and removed as new devices are plugged into the host
computer. Automatic device pairing allows users to
collaborate instantly after connecting new devices.

The ClientPointer is a novel principle to resolve
ambiguity in single-user APIs. Each application is
assigned a ClientPointer device, and MPX chooses the
ClientPointer to provide data for ambiguous requests.
Any device can interact with an application regardless of
the ClientPointer setting, and the ClientPointer can be
changed at run-time.

The concept of grab ownership enables multiple
applications to gain exclusive access to a pointer and/or
keyboard device at a time to provide common interfaces
such as popup menu. Allowing passive grabs with
flexible devices allows for multiple popup or drop-down
menus simultaneously

Both the ClientPointer and grab ownership are designed
for legacy applications and do not affect novel multi-user
applications. These applications can query the list of
input devices at any time and thus adjust their interface to
provide true multi-user interaction within the same
application.

MPX broadens the single-pointer single-keyboard
paradigm that is prevalent current desktop environments.
To extend the windowing systems of Microsoft Windows
and Apple Mac OS X to become GWWS, they need to
replicate the ClientPointer principle to maintain
compatibility with legacy applications. Additionally, the
windowing systems need to adjust the event delivery to
represent each cursor and keyboard focus. Finally, they
need to provide new APIs for multi-user applications.

8 Future Work
We are currently working on integrating additional
functionality into MPX such as remote controlled input
devices for distributive collaborative groupware. A
formal evaluation of MPX is pending. We also plan to
improve MalaMinya and MM2 and extend the suite of
demonstration applications. Finally, we are working on
merging MPX into the main X.org source code.

9 Acknowledgements

The authors would like to acknowledge NICTA for
funding this project. We would furthermore like to thank
the members of the Wearable Computer Lab, especially
Benjamin Close, Mark Rebane and Rebecca Witt, and the
X developer community, especially Daniel Stone and
Keith Packard, for their comments.

10 References
Baudisch, P., Sinclair, M., and Wilson, A. (2006): Soap:

a pointing device that works in mid-air. In UIST '06:
Proceedings of the 19th annual ACM symposium on
User interface software and technology, pp 43-46,
Montreux, Switzerland, 2006.

Bier, E. A. and Freeman, S. (1991): MMM: a user
interface architecture for shared editors on a single
screen. In UIST '91: Proceedings of the 4th annual
ACM symposium on User interface software and
technology, pp 79-86, Hilton Head, South Carolina,
United States, 1991.

Dietz, P. and Leigh, D. (2001): DiamondTouch: a multi-
user touch technology. In UIST '01: Proceedings of the
14th annual ACM symposium on User interface
software and technology, pp 219-226, Orlando, Florida,
2001.

Esenther, A., Forlines, C., Ryall, K., and Shipman, S.
(2002): DiamondTouch SDK: Support for Multi-User,
Multi-Touch Applications. Mitsubishi Electronics
Research Laboratory, Report No. TF2002-48.

Greenberg, S. (2007): Toolkits and interface creativity.
Multimedia Tools Appl., Vol. 32, No. 2, pp 139-159,
2007.

Grudin, J. (1994): Groupware and social dynamics: eight
challenges for developers. Commun. ACM, Vol. 37,
No. 1, pp 92-105, 1994.

Grudin, J. (2001): Partitioning digital worlds: focal and
peripheral awareness in multiple monitor use. In CHI
'01: Proceedings of the SIGCHI conference on Human
factors in computing systems, pp 458-465, Seattle,
Washington, United States, 2001.

Han, J. Y. (2005): Low-cost multi-touch sensing through
frustrated total internal reflection. In UIST '05:
Proceedings of the 18th annual ACM symposium on
User interface software and technology, pp 115-118,
Seattle, WA, USA, 2005.

Figure 8. Screenshot of the MM2 drawing tool.

Hourcade, J. P. and Bederson, B. B. (1999): Architecture
and Implementation of a Java Package for Multiple
Input Devices (MID). University of Maryland, Report
No. CS-TR-4018, 1999.

Hutterer, P., Close, B. S., and Thomas, B. H. (2006):
TIDL: Mixed Presence Groupware Support for Legacy
and Custom Applications. In AUIC '06: Proceedings
of the seventh conference on Australasian user
interfaces, pp 107-114, Hobart, Australia, 2006.

Hutterer, P. and Thomas, B. H. (2007a): Bridging the
Gap between Desktop Computers and Tabletop
Displays. Conference Supplement of Tabletop 2007:
IEEE Int'l Workshop on Horizontal Interactive Human-
Computer Systems (DVD Proceedings), 2007.

Hutterer, P. and Thomas, B. H. (2007b): Groupware
Support in the Windowing System. In AUIC '07:
Proceedings of the eighth conference on Australasian
user interfaces, pp 39-46, Ballarat, Australia, 2007.

Inkpen, K., McGrenere, J., Booth, K. S., and Klawe, M.
(1997): The effect of turn-taking protocols on
children's learning in mouse-driven collaborative
environments. In GI '97: Proceedings of the
conference on graphics interface, pp 138-145,
Kelowna, British Columbia, Canada, 1997.

Ishii, H. and Kobayashi, M. (1992): ClearBoard: a
seamless medium for shared drawing and conversation
with eye contact. In CHI '92: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pp 525-532, Monterey, California, United
States, 1992.

Izadi, S., Brignull, H., Rodden, T., Rogers, Y., and
Underwood, M. (2003): Dynamo: a public interactive
surface supporting the cooperative sharing and
exchange of media. In UIST '03: Proceedings of the
16th annual ACM symposium on User interface
software and technology, pp 159-168, Vancouver,
Canada, 2003.

Kruger, R., Carpendale, S., and Greenberg, S. (2002):
Collaborating over Physical and Electronic Tables. In
Extended Abstract of CSCW '02, pp 139-140,
November, 2002.

Pawar, U. S., Pal, J., Gupta, R., and Toyama, K. (2007):
Multiple mice for retention tasks in disadvantaged
schools. In CHI '07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pp
1581-1590, San Jose, California, USA, 2007.

Shen, C., Everitt, K., and Ryall, K. (2003): UbiTable:
Impromptu Face-to-Face Collaboration on Horizontal
Interactive Surfaces. MERL, Report No. TR-2003-49,
2003.

Shen, C., Vernier, D., Forlines, C., and Ringel, M.
(2004): DiamondSpin: an extensible toolkit for around-
the-table interaction. In CHI '04: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pp 167-174, Vienna, Austria, 2004.

Shoemaker, G. B. D. and Inkpen, K. M. (2001):
MIDDesktop: An Application Framework for Single

Display Groupware Investigations. School of
Computing Science, Simon Fraser University, Report
No. TR 20001-01, April 2001.

Stanton, D. and Neale, H. R. (2003): The effects of
multiple mice on children's talk and interaction. J.
Comp. Assisted Learning, Vol. 19, No. 2, pp 229-238,
2003.

Stewart, J., Raybourn, E. M., Bederson, B., and Druin, A.
(1998): When two hands are better than one: enhancing
collaboration using single display groupware. In CHI
'98: CHI 98 conference summary on Human factors in
computing systems, pp 287-288, Los Angeles,
California, United States, 1998.

Tse, E. and Greenberg, S. (2004): Rapidly prototyping
Single Display Groupware through the SDGToolkit. In
AUIC '04: Proceedings of the fifth conference on
Australasian user interfaces, pp 101-110, Dunedin,
New Zealand, 2004.

Tse, E., Histon, J., Scott, S. D., and Greenberg, S.
(2004): Avoiding interference: how people use spatial
separation and partitioning in SDG workspaces. In
CSCW '04: Proceedings of the 2004 ACM conference
on Computer supported cooperative work, Chicago,
Illinois, USA, 2004.

Wilson, A. D. (2004): TouchLight: an imaging touch
screen and display for gesture-based interaction. In
ICMI '04: Proceedings of the 6th international
conference on Multimodal interfaces, pp 69-76, State
College, PA, USA, 2004.

Wu, M. and Balakrishnan, R. (2003): Multi-finger and
whole hand gestural interaction techniques for multi-
user tabletop displays. In UIST '03: Proceedings of the
16th annual ACM symposium on User interface
software and technology, pp 193-202, Vancouver,
Canada, 2003.

