
A Case Study in Access Control Requirements
for a Health Information System

Mark Evered
Serge Bögeholz

School of Mathematics, Statistics and Computer Science
University of New England

Armidale, 2351, NSW, Australia

 Email: {markev,serge}@mcs.une.edu.au

Abstract

We present a detailed examination of the access
constraints for a small real-world Health Information
System with the aim of achieving minimal access rights
for each of the involved principals. We show that, even
for such a relatively simple system, the resulting
constraints are very complex and cannot be expressed
easily or clearly using the static per-method access control
lists generally supported by component-based software.
We derive general requirements for the expressiveness of
access constraints and propose criteria for a more suitable
access control mechanism in the context of component-
based systems. We describe a two-level mechanism which
can fulfil these criteria.

Keywords: access control, component, health information
system

1 Introduction
The development of middleware technology has led to the
practice of constructing software systems as collections of
heterogeneous distributed components. Such systems are
increasingly used for database integration, decision
support systems, electronic commerce and many other
applications. In general, the information stored within the
components of these systems is sensitive and requires
some form of access control. This is particularly
important as the internet is increasingly used as the basis
for distributed systems and as the threat from hackers and
malicious software continues to grow. As well as
protecting a system from these external threats, the access
control should also ensure compliance with privacy laws
and ideally, should guarantee that each user with access to
the system uses the information only exactly as required
for their role within the organisation.

Despite the sensitivity of the data and the growing threat,
relatively little attention has been paid to the complexities
of real-world access constraints in middleware

Copyright © 2004, Australian Computer Society, Inc. This
paper appeared at the Australasian Information Security
Workshop 2004 (AISW 2004), Dunedin, New Zealand.
Conferences in Research and Practice in Information
Technology, Vol. 32, James Hogan, Paul Montague, Martin
Purvis and Chris Steketee, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is
included.

development. Systems such as OMG’s Corba (Blakley
2000) and Sun’s Enterprise Java Beans (Hartman 2001)
include a form of access control li st (ACL) but these tend
to be add-on features which remain limited and inflexible.
Much attention has been given to encryption techniques
but, while encryption is certainly important, it protects
only the communication and authentication in the system.
It provides only the basis for a secure access control
mechanism.

In this paper we present a case study of the access control
requirements for a Health Information System in a small
aged care facility in rural New South Wales. The aim is to
specify precisely the minimal access requirements for
each of the involved principals and to use this as a basis
for assessing how well the constraints can be expressed
and enforced with existing middleware technologies.

We have chosen to investigate a facil ity which has strict
procedures and policies in place for compliance with
privacy laws but which, as yet, uses no computer system
at all. All information is currently held on paper in filing
cabinets with access physicall y controlled by the manager
of the institution. The advantage of choosing a paper-
based facilit y for the case study is that no compromises
have been made to adapt the access constraints to the
limitations of a computer system.

We begin in the next section by briefly reviewing the state
of the art in access control for component-based systems.
Section 3 describes the aged care facil ity, identifies the
data and principals involved and describes the access
constraints for each of the principals. In section 4 we
formulate some general kinds of access constraint which
can be derived from the case study and in section 5
outline some requirements for a mechanism which is able
to express and enforce these kinds of constraints in a clear
way. Section 6, gives an overview of and comparison
with related research.

2 Access control in component-based
systems
Traditionally, access control has been expressed in terms
of read/write access. This is true for the files stored in a
standard file system and also for the attributes associated
with a record in a database system. An object-oriented
approach can be used to support a finer-grained, higher
level form of access control than this.

A component in a distributed application can be viewed

as an object containing (possibly persistent) data, hidden
by encapsulation and accessible via interface methods.
This allows the access control to be expressed in terms of
the interface methods of the object, which can be
meaningful, application-level operations associated with
the object in the real world. So, for example, we may
define a persistent object which implements patient
records in a Health Information System with methods for
adding a new patient, adding a treatment for a patient, etc.
(Fig. 1).

 Fig.1 A persistent object for patient information

Note that this object contains the data for a set of patients
rather than representing the data of a single patient. So,
for example, the setRoom method has a parameter
indicating which patient is meant and a parameter giving
the room number for that patient. This concept of a
container object is important for a number of reasons. One
reason is that some operations involve more than a single
patient. An example here is the patientsInRoom method
which returns a list of the patients who are sharing a
particular room. Another reason has to do with
persistence. It is not practical to make each individual
patient record into an independently persistent object. In
fact often this not even desirable since the data may
actually be stored in a database system with the object
serving as a wrapper which hides the implementation and
offers the high-level operations. Finall y, for security and
consistency, we want to ensure that no reference to data
for a single patient can be retained and manipulated by a
client independently of access via the container.

The access rights to this Patients object can be granted on
the basis of the roles of the principals within the
organisation. Software running on behalf of an
administrative assistant at a hospital may, for example,
have the right to invoke the addPatient method and the
patientsInRoom method. For a nurse, access to the
getMedication method would be allowed while only a
doctor would have access to the addMedical method to
add an entry to a patient’s medical records. An X-ray
technician would be allowed to invoke the addTreatment
method which adds information both to the medical
information and the bil ling information of a patient.

This idea of limiting access on the basis of interface
operations goes back as far as Jones’ and Liskov’s (1978)
suggestion of a static type-based constraint mechanism
and Keedy’s and Richards’ (1982) semantic operations
for persistent file objects. Some form of method-based
access control has been incorporated into most

contemporary middleware mechanisms. The COM+
security mechanism offers ‘per-method access control
li sts’ which record, for each method, a list of users
allowed to invoke that method (Eddon 1999). In Sun’s
EJB, a set of roles can be defined in a deployment
descriptor together with a list of the methods of the bean
which can be invoked for each role (Hartman 2001). In
the Corba Security Service there is an additional level of
indirection with principals mapped to attributes, attributes
mapped to rights (for a certain domain) and rights mapped
to interfaces or interface methods (Beznosov 1999).

These mechanism clearly offer a finer-grained access
control than a simple read/write approach but the question
nevertheless remains as to how well they support the
kinds of access constraint required in real applications. It
is easy to present a simplified model as in the above
diagram, but the definition of such an object for the
requirements of a real system is considerably more
complex.

3 A simple application

3.1 Overview
The case study is based on a Health Information System
for an aged-care facil ity in rural New South Wales,
Australia. The facility offers single room accommodation
for some 30 resident. Administrative duties including the
formulation of procedures and policies are handled by a
manager who was the primary source for the case study
information. Residents are cared for by health care staff, a
nurse and volunteers with visits by doctors and, where
necessary, physiotherapists.

The facil ity currently uses only paper records. The
information stored includes personal, financial and
medical information about each resident and contact
detail s for the staff and visiting professionals. For the sake
of simplicity, we have chosen to ignore the administration
of staff salaries and other financial aspects of the
institution in order to concentrate on the processing of the
data concerning the care of the residents.

The proposed electronic version of the system is intended
to completely replace the use of paper, providing intranet
access to the HIS information stored on a server system.
One PC wil l be used by the manager and a number of PCs
will be available for use by the health care staff. Doctors
and physiotherapists wil l make use of mobile devices
which hook into the network dynamicall y.

The aim in formulating the access contraints for the
various principals is to maintain at least the strictness of
the current paper-based system and, ideally, to achieve a
strict need-to-know access scheme. Before proceeding to
the access rules, however, it is necessary to describe more
fully the data which needs to be stored for each resident.

3.2 Data
There are two basic kinds of data maintained for each
resident. The first is (relatively) static data entered into
the system when a resident is admitted. This includes
personal details such as name, sex, religion etc., medical
insurance information and past medical records.

patientsInRoom

…

addTreatment

computeBill getMedication

addMedicaldelete

 addPatient

Patient
Data

One important sub-category of this initial data is the
emergency details. As well as medical information such
as blood group, allergies etc., and contact detail s for the
resident’s doctor, this includes the contact detail s of a
responsible person (formally referred to as next-of-kin)
who is to be contacted in emergencies and who, if the
resident is not mentally capable, can make decisions and
provide signatures on behalf of the resident. Currently, a
special card system is used to make this information
available very rapidly.

Before admittance a checkli st of this initial information
and a legal agreement must be signed by the resident (or
the responsible person). In the electronic system, these
signatures are to be realised by a method invocation
(represented at the user interface by a mouse cli ck on an
acceptance form).

The second kind of resident information is that which is
used and updated in the normal day-to-day running of the
facilit y. Most of this is represented by three sets of
information:

The care plan

This is a working document that contains detailed
information and instructions regarding the day-to-day care
of the resident, eg. what assistence is required with meals,
hygiene etc. A care plan is started for each resident on
admission and is updated on a regular basis. Old versions
of the care plan are archived.

Progress notes

These are observational entries covering such aspects as
physical mobilit y, appetite, behaviour, mood and the
general state of the resident. Progress notes are used to
update the care plan. Progress notes older than one year
are also archived.

Medical records

A number of different doctors visit the facility with one
doctor visiting each week on ‘clinical day’. Residents can
choose which of these doctors they wish to attend them.
The facil ity requires that each resident undergo a medical
examination at least every six months and medication is
reviewed at least every three months. After each
examination the doctor adds an entry to the medical
records of the patient. Currently these records are kept in
duplicate with one copy in the facility and another kept by
the appropriate doctor. The doctor’s copy additionally
includes private notes for each of his/her patients. In the
electronic version this duplication is to be eliminated.

In the current paper-based system, medical entries older
than one year are archived and filed away in a locked
room. Recent medical entries are stored in a locked fili ng
cabinet in a more accessible location with access
controlled by the manager.

3.3 Access rules

Manager
The manager has the broadest access to the information,
including access to personal, financial, clinical and
medical information about each resident. This does not

mean, however, that she has unrestricted access. Although
she can enter the past medical records when a resident is
admitted, she cannot subsequently add medical entries to
the system. In the current paper-based system, this is
prevented by requiring that any new entry be signed by
the doctor making that entry. Also, she cannot view the
private notes of doctors and clearly she cannot sign the
legal agreement on behalf of a resident.

Only the manager is allowed to add a new resident to the
system and to start or update the care plan of a resident.
The care plan is updated in consultation with the resident
or the responsible person.

Only the manager is allowed to delete the information
about a resident but here also that right is restricted.
Privacy laws require that the information be held for a
certain period after a resident leaves the facil ity. This
period is seven years for someone who is not of
Aboriginal or Torres Strait Islander descent and nine
years for someone who is.

Health Care Workers
The health care workers are required to sign a
confidentiality agreement before they have access to any
resident data. Their main form of access is to view the
care plan for each resident and to add progress note
entries based on their observations. Access to emergency
detail s is available for all staff.

Health care workers can view recent medical records of
residents (up to one year old) but cannot normally view
older medical information. For a special purpose, access
to an older medical record can be sought and obtained
from the manager.

Because of the physical access control in the current
paper system, the manager has an overview of who has
accessed what information. In an electronic system this
overview must be supplied by some form of logging of
accesses and access attempts. Clearly, the manager does
not wish to be informed about every access but some
logging is still necessary. So, for example, the manager
should be made aware of repeated attempts by a health
care worker to access information beyond their rights.

Doctors
A visiting doctor has access to all the medical information
of residents who are his/her patients and can add entries to
their medical records. Doctors can also add private notes
about a resident, which, on the basis of doctor-patient
confidentiality, are not visible to health care staff or the
manager. Doctors need not sign a confidentiality
agreement since they are bound by a code of professional
conduct.

Occasionally, due to pressing circumstances, it may be
necessary for a visiting doctor to examine a resident who
is not normally his/her patient. This is permitted with the
consent of the resident or the responsible person and the
notification of the manager. The doctor then has
temporary access to the resident’s medical records (but
not to the private notes of the resdient’s usual doctor).

Residents
The principals involved in an information system are
usually thought of as staff members of a certain
organisation. Privacy laws require, however, that a person
should have full access to any information stored about
them (unless the well -being of a third party would be
jeopardised by revealing the information).

In our case study this means that the residents themselves
must also be regarded as principals for whom we define
access rights. In the current paper system, all the
information stored about a resident is accessible to the
resident by arrangement with the manager. The need to
make this arrangement is only to allow the manager and
resident to set a time that is convenient to both of them.

In an electronic system we can allow residents to hook
into the network at any time as long as they can view only
their own data and cannot make arbitrary changes. This
includes the right to view even the private notes entered
by a doctor.

Others
For the sake of brevity we will not discuss in detail the
access rights of all the other principals. These include the
nurse, visiting physiotherapists, volunteer helpers and the
responsible person for each resident. In a larger institution
some of the duties of the manager would be performed by
administrative staff but in this facil ity, such staff are not
necessary.

For a full discussion of principals and the corresponding
access rules see (Bögeholz, 2003).

4 General access control requirements

4.1 Methods of the Residents object
In this section we discuss how the resident information
described above can be stored in a persistent object with
appropriate interface methods providing the operations
required at the application level. We then proceed to
describe a number of basic kinds of access constraint
which need to be imposed on the invocation of the
methods in order to enforce the access rules described
informally in the previous section.

The following Java interface type is not the full definition
of the Residents object. Rather it is intended to give an
indication of the nature of the interface and to li st
example methods which are relevant to the subsequent
discussion of access control. The full interface definition
of the Residents object and other objects comprising the
HIS system, together with a description of their
implementions are given in (Bögeholz, 2003).

public interface Residents {

 int newResident();

void setName(int key, String name);

void setDescent(int key,

 boolean aboriginalTorres);

void setDoctor(int key, int doctorId);

 int getDoctor(int key);

void giveConsent(int key);

 void addMedicalTreatment(int key,

 String treatment,

 int enteredBy);

String getMedicalTreatment(int key,

 int index);

void adjustCarePlan(int key,

 String carePlan);

String getEmergencyDetails(int key);

...

}

The newResident method adds a new resident record to
the object and returns a key for that record. The key is
given as a parameter in many of the other methods to
identify which resident is intended. Some String
parameters and results are in XML format to provide a
standard way of passing structured information.

The addMedicalTreatment method adds an entry to the
li st of medical treatment entries for a resident. It has a
parameter for indicating who is making the entry. The
getMedicalTreatment method can be used to retrieve this
information. An index value of 0 means the most recent
entry, 1 means the previous entry etc.

4.2 Access to a subset of methods
This is the fundamental kind of access restriction in an
object-oriented approach to access control. So, for
example, nobody but the manager should be allowed to
invoke the first four methods shown above and only a
doctor should be able to invoke the addMedicalTreatment
method.

A particularly interesting use of this kind of restriction is
in reali sing signatures. The giveConsent method is
invoked by a resident to register consent to the legal
agreement with the aged care facilit y. If the access control
mechanism can guarantee that only the resident can
invoke this method, then the fact that it has been invoked
can be regarded as a signature. The same mechanism can
be used by health care staff for signing the confidentialit y
agreement.

4.3 Access dependent on attribute value
Sometimes the question of whether an access should be
allowed to proceed depends on the information stored for
a particular resident. So, for example, the manager is only
allowed to invoke the delete method for a resident if the
values stored for ‘date of leaving facility’ and ‘descent’
indicate that privacy laws would permit that deletion.

Similarly, a doctor may (normally) only invoke the
getMedicalTreatment method for a resident for whom that
doctor has been stored as the resident’s chosen doctor. In
a larger institution we might want to restrict the access of
health care staff to information of only those residents in
the wing/ward/department to which a member of staff is
assigned.

4.4 Access with time constraints
A visiting doctor can treat a resident who is not normally
his/her patient if there is a pressing reason and the
resident agrees. This access right should not be
permanent, however. It is suff icient if the doctor can

access the relevant information on the day of the
examination. The access right should subsequently expire.

The same situation exists for a health care worker who
has been granted permission to retrieve medical records
older than one year. This permission is for a special
reason and should be limited in time.

4.5 Access based on call history
Like the constraints in 4.3 above, this kind of constraint
depends on the state of the object but here the relevant
factor is not the attributes of the information being stored
but the allowed sequence of method invocations. So, for
example, a health care worker cannot invoke any method
to retrieve information about any resident unless he/she
has already invoked the method for signing the
confidentiality agreement.

A special case of access based on call history is the
permission to invoke a method only once. The manager
should not be able to re-set the ‘descent’ information once
the method to set this value has been invoked and the
value signed-off by the resident. Similarly, the invocation
of the method to sign the legal agreement should only be
invoked once by a resident.

4.6 Access with fixed parameter value
A resident is allowed to invoke any of the methods which
return information stored about him/her but, of course,
has no access to information stored about other residents.
This implies that a resident only be allowed to invoke
methods with a particular value of the key parameter.

Similarly, each doctor must be restricted to passing a
certain value for the enteredBy parameter of the
addMedicalTreatment method, namely, the value which
represents the identity of that doctor.

4.7 Access with logging
Sometimes it is desirable to keep a record of who has
done what and when with a persistent object. In a high-
security context it may even be necessary to record every
invocation of an object but in most information systems
this would result in a flood of data which would tend to
hide rather than expose the accesses of interest.

In this case study, the manager indicated that she would
wish to be informed about certain invocations of the
Residents object by health care workers and volunteers.
So, for example, a record must be kept of exactly when
and by whom emergency details for a resident have been
retrieved.

Logging may be required both for successful and for
unsuccessful method invocations. The manager also needs
to be informed if a member of staff repeatedly attempts to
perform some operation on the object for which they have
no permisison.

5 Towards an ideal access control
mechanism

5.1 Criteria
Clearly, a single case study is not sufficient to motivate
the design of an access control mechanism. Nevertheless,

it is instructive to consider what such a mechanism would
need to offer to cater for even such a small example
system. As well as being able to express the kinds of
access control listed in the previous section, we claim that
an ideal mechanism must also fulfil a number of further
generic security criteria:

Concise

Access control is no use if it is not correct. If it is possible
to express complex constraints only in an awkward or
long-winded way, then errors are likely to be made. Our
first criterion is therefore that the mechanism should
allow the constraints to be expressed in an easy, concise
way. This is especially true for the most common kinds of
constraints. In general, mechanical repetition or
extraneous effort in the expression of the rules are
indications that something is amiss.

Clear

Closely related to concise expression is the clarity of the
mechanism. Access constraints must be not only
expressed but also checked. Ideally, at least for the most
common cases, it should be apparent at a glance what the
rule is saying and therefore whether it is correct.

Aspect-oriented

A third criterion is that the access control information
should be separated from the application code, not
embedded into or mixed up with it. This corresponds to
the idea of aspect-oriented programming (Kiczales 1997)
where separate aspects of a program such as security and
synchronisation are formulated separately and then
combined automatically by an ‘aspect weaver’.

This separation makes both the application code and the
access control easier to understand and also allows the
same application object to be used in different security
contexts with different access rules.

Fundamental

Ideally, an access control mechanism is integrated at a
fundamental level within a system. For a component-
based system this means that the access control should be
integral to the middleware rather than an optional add-on.
One advantage of this is that developers are forced to
address access control questions from the very start.
Another advantage is that it is then more difficult for
hackers to ‘get around’ the mechanism.

Positive

The access rights of a principal should be expressed in
terms of what that principal is allowed to do rather than
what he/she is not allowed to do. This ensures that the
default is that no access at all is allowed and that each
permission must be explicitly listed.

Need-to-know

A strict need-to-know approach to access control is not
only desirable in military environments. Financial
transactions and the manipulation of sensitive personal
data are increasingly being perfomed electronically via
networks and users have a right to expect that no more of
their data is being revealed than is absolutely necessary

for a particular service.

Eff icient

Clearly, a certain overhead will always be involved in
performing access control checks but this overhead
should be kept at a reasonable level.

5.2 Realisation
This case study demonstrates that access constraints in the
real world, if taken seriously in terms of the need-to-know
principle, can be very complex, even for a small
information system. Standard access control mechanisms
for component-based systems are based on a static per-
method access control list and cannot easily support these
complex kinds of constraints. It is possible to add more
methods or more objects to the system in an attempt to
achieve the desired result but if this is done in an ad-hoc
way then many of the criteria listed in section 5.1 will be
violated and, as a result, errors and loopholes will be
introduced.

This is reminiscent of the attempt to use path expressions
to specify the synchronisation constraints for objects.
Here also, the constraints are expressed solely in terms of
method names. For simple cases this is sufficient and
even elegant but for realistic examples such as
reader/writer synchronisation with priorities, the only
solution is to introduce additional methods which have
nothing to do with the application code (Habermann
1974).

One way to enable complex access control constraints
while keeping them separate from the application code is
to use some form of security proxy. All method
invocations to an object are passed through this proxy and
checked before being passed on to the underlying object.
Such a security proxy still has a number of problems in
terms of the above criteria, however. One problem is that
the clarity is hindered by the need to program all the
constraints for all of the principles in a single object.
Another problem is that all of the methods are still visible
to all of the principles even if they are not invocable. This
violates a strict need-to-know approach and complicates
the use of the object. This problem is magnified by the
fact that an object in a real system may easily have over
100 methods on its interface. Thirdly, such a proxy
mechanism is not generally an integral part of the
component architecture but rather an add-on feature (if
available at all).

In order to fulfil all the criteria we propose a two-level
approach. A flexible low-level mechanism can guarantee
the security and efficiency of the approach while a high-
level language construct can enable conciseness and
clarity to support correctness.

5.2.1 Bracket capabilities
Our approach for the lower level is the bracket capability
mechanism. The concept behind this mechanism is
presented more fully in (Evered 2002a) and an
implementation in the Opsis system is described in
(Evered 2002b). The mechanism is based on object
capabilities rather than ACLs because capabilities
enhance and simplify security by unifying object naming

with the protection mechanism (Wilkes 1979). Our
capabilities differ from traditional sparse capabilities in
that they contain not an object identifier, but an identifier
for a (capability) server which knows the location of the
object. This indirection allows for object migration. When
a persistent object is created, a capability for the object is
created and registered with the capability server. The
capability server also contains other information about
accessing the object, including the type of the object as
seen by the possessor of that capability.

To gain access to an object, the object is ‘opened’ using a
capability. For example:

Residents res = (Residents) c.open();

where c is a variable of type Capability . The object
can then be accessed via invocations of its interface
methods. For example,

res.setName(12345, “Smith, John”);

So far, this is not much different from other mechanisms
based on object capabilities. The main difference is seen
when the possessor of a capability wishes to grant a more
restricted view of the object to other users in the system.
This is done by a call to the refin e method. Each
persistent object, as well as implementing an interface
such as Resident s also implements the standard
interface Persistent which includes methods such as
deleteObject , deleteCapabilit y and refin e.
The refine method is called as follows:

x = (Persistent) c.open();
Capability cref = x.refine(interface, class);

where interface denotes the type with which the
persistent object is to be viewed (when opened using the
capability cref) and clas s denotes the class of an
object through which calls to the persistent object will
pass when invoked via cref . The result of the refin e
call is depicted in Fig. 2.

 Fig 2: The result of the ' refine' operation

It can be seen that, as well as having a restricted interface,
calls using the capability cref are directed through a
bracketing object. This bracketing object is stored
together with the underlying component in the same way
that access rights are stored with the component for other
sparse capability mechanisms.

A copy of cref can be given to the principals who are to
have this kind of access. By creating as many such new
capabilities as we need, we can give each principal
exactly the interface and the bracketing code required.

So, for example, we can achieve the same effect as

Bracketing
ObjectInterface

Object

orig. capability

refined capability

standard per-method ACLs by listing only certain
methods in the interface. In the case of bracket
capabilities, however, the missing methods are not even
visible to the principal. Additionally, we can achieve
more complex access constraints by providing whatever
checks are necessary in the code of the bracketing object.

We can compare this approach to the simple per-method
approach of Corba and EJB in which more complex
constraints are generally programmed in the code of the
component to be protected (Table 1).

As can be seen, the use of bracket capabilities can fulfil
many of the criteria but the access constraints are still
written as normal program code which is often difficult to
understand as well as tedious and repetitious and this in
turn is likely to lead to errors. For this reason, we propose,
as the second level, a special language construct for
formulating access constraints.

5.2.2 A language construct for access
constraints
In order to fulfil the requirements of conciseness and
clarity, we define an ‘access construct’ which provides a
high-level description of the access constraints and is
automatically translated into the class to be used as the
bracketing class for a particular capability. For the most
complex cases, this construct can contain arbitrary
program code, but for the most commonly occurring
cases, such as described in section 4, it is designed to be
as clear as possible.

Criterion Bracket
Capabilities

Simple Per-
method ACLs

Concise poor poor

Clear poor poor

Aspect-
oriented

good poor

Fundamental good poor

Positive good good

Need-to-
know

good fair

Efficient good good

Table 1: Bracket capabilities vs standard approach

So, for example, the access given to a doctor will include
the following:

interface DoctorView {
 String getMedicalTreatment(int key,

int index);

 ...

}

access DoctorAccess to Residents

 provides DoctorView {

 int doctorId;

 pre { check(doctorId==getDoctor(key)) }

 ...

}

where the interface defines the doctor’s view of the object
and the access construct defines further constraints. In this
case the constraint is that the doctor associated with this
patient is the same as the doctor making the method
invocation.

A formal definition of the access construct is beyond the
scope of this paper. Informally, it is equivalent to a Java
class definition with the addition of a pre and/or a post
section for defining actions to bracket a method
invocation. It can also contain variable values to be
substituted for parameters of the methods of the bracketed
object. This is adequate for clearly expressing all the
constraints of the case study without awkwardness or
repetition.

Given this second level on top of the bracket capability
mechanism, the comparison with the standard approach is
as shown below (Table 2).

Criterion Access
Construct

Simple Per-
method ACLs

Concise good poor

Clear good poor

Aspect-
oriented

good poor

Fundamental good poor

Positive good good

Need-to-
know

good fair

Efficient good good

Table 2: Access construct (on top of bracket
capabilities) vs standard approach

6 Related work
As mentioned above, standard middleware systems such
as Corba, COM+ and EJB include the possibility of a per-
method, role-based access control list for limiting the
access of principals to interfaces or objects. In some
cases, fixed forms of rule-based access, such as access at
certain times of day, are supported. These correspond
only to simple, special cases of access control. No direct
equivalent of the complex restrictions required for the
case study are supported. No direct equivalent of a
restricted view of the object is supported for hiding the
existence of unallowed methods and parameters from the
principals. In both of these middleware technologies, the
use of ACLs instead of capabilities makes the security
mechanism an add-on feature rather than fundamental and

detracts from the security.

Object capabili ties have been used in a number of
research systems, most notably the Monads system
(Rosenberg and Abramson, 1985) and for the ‘protected
subsystems’ in the Multics system (Saltzer, 1973) but
these capabil ities require architectural support (or at least
a special operating system kernel) and so are not
appropriate for heterogeneous networks. Brose (1999) has
proposed a language-based extension to the Corba
security model in which the allowed ‘views’ for each user
are defined in terms of the methods of an object type.
Like the Monads and Multics systems and the ACL
approaches of Corba and EJB, however, these support
only simple per-method access control. In all cases, all of
the methods are visible to all principals even if they may
not be invoked and parameters cannot be fixed to certain
values.

The concept of ‘bracketing’ for applying access
constraints has been suggested both as a programming
language construct (Keedy et al., 2000) and as a form of
‘design pattern’ (Gamma, 1995). The suggested
programming language approach is interesting in
supporting the reuse of the bracketing code but it does not
allow modification of the interface to the underlying
object or a concise and clear expression of access rules.

One use of the proxy design pattern is as a protection (or
access) proxy. In this case, the interface is identical to the
underlying object. The proxy decides whether the access
can proceed and returns an error if it should not.
Bracketing objects which modify the interface offered to a
client cannot be seen as strict proxies. They can be seen as
special cases of the adapter pattern but whereas an adapter
is usually used to provide the view the client would like to
have of the underlying object, in these cases the adapter is
providing the view the client is allowed to have.

The concept of providing a user with a restricted view of
persistent data is reminiscent of database systems.
Traditional database views are attribute-oriented and not
method-oriented, however, and therefore cannot support
the flexible kinds of access control required for our
example. This attribute-orientation is true even for most
object-oriented databases (Mishra and Eich, 1994).
Notable exceptions are the method-based model of
Fernandez, Larrondo-Petrie and Gudes (1993) and the
CACL system of Richardson, Schwarz and Cabrera
(1992). The former provides an ‘Execute’ access right for
invoking a method of a persistent object. This is similar to
the per-method access control of contemporary
middleware systems. The latter supports the concept of an
‘authorization type’ as a restricted view of an object but
does not allow parameter constraints, state-dependent
constraints etc. to be specified as part of the view.

7 Conclusion
Per-method object-based access control allows access
restrictions to be expressed in terms of high-level,
application-relevant operations on the components of a
software system. This is a considerable improvement on
the data-oriented read/write access restrictions in file
systems and in most database systems. Nevertheless, the

question arises whether the access constraints of real
information systems can adequately be expressed merely
by specifying a method subset for each principal to each
interface or object of the system.

We have presented a case study of the access constraint
requirements of a very simple real-world health
information system. The information system involves the
resident data for a small aged care facilit y and the access
to be permitted for staff members, for visiting
professionals and for the residents themselves. We have
chosen a system which is currently stil l paper-based so
that the access procedures and policies have not been
influenced by the limitations of contemporary information
systems software.

The case study shows clearly that the access constraints
for even such a simple system, if expressed in terms of the
minimum access required for each principal, are
extremely complex. We conclude that the per-method
access control lists of standard component technology are
not adequate for expressing such real-world access
constraints in a clear, concise manner.

We have categorised the kinds of access rules required for
the case study and on the basis of these and further
generic criteria, have formulated some requirements for
an ideal access control mechanism. We propose a form of
access adapter which combines the expressiveness of
general program code with the clarity of a declarative
approach for the most common cases.

Ongoing work includes further case studies to investigate
the adequacy of the access construct as currently defined
and work on a Java implementation of the mechanism.

References

Beznosov, K., Deng, Y. (1999): A Framework for
Implementing Role-based Access Control using
CORBA Security Service, Proc. 4th ACM Workshop
on Role-based access control, Fairfax.

Bögeholz, S. (2003): Access Control in a Distributed
Health Information System: A Case Study, Masters
Thesis, University of New England, Armidale.

Blakley, B., Blakley, R., Soley, R.M. (2000): CORBA
Security: An Introduction to Safe Computing with
Objects, Addison-Wesley.

Brose, G. (1999): A View-Based Access Control
Model for CORBA, in: Jan Vitek, Christian Jensen
(eds.), Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, LNCS 1603,
Springer.

Eddon, G. (1999): The COM+ Security Model Gets
You Out of the Security Programming Business,
Microsoft Systems Journal, November.

Evered, M. (2002): Bracket Capabil ities for Distributed
Systems Security, Proc. 25th Australasian Computer
Science Conference, Melbourne.

Evered, M. (2002): Opsis: A Distributed Object
Architecture Based on Bracket Capabilities, Proc.
Conference on Technology of Object-Oriented
Languages and Systems, Sydney.

Evered, M. (2003): Flexible Enterprise Access Control
with Object-oriented View Specifications,
Australasian Information Security Workshop,
Adelaide.

Fernandez, E.B., Larrondo-Petrie, M.M., Gudes, E., A.
(1993): Model of Methods Access Authorization in
Object-oriented Databases, Proc. of the 19th VLDB
Conference , Dublin.

Gamma, E. et al. (1995): Design Patterns, Addison-
Wesley.

Habermann, A.N., Campbell, R.H. (1974): The
specification of process synchronization by path
expressions, Lecture Notes on Computer Science, 16.

Hartman, B., Flinn, D.J., Benznosov, K. (2001):
Enterprise Security with EJB and CORBA, Wiley.

Jones, A., Liskov, B. (1978): A language extension for
expressing constraints on data access.
Communications of the ACM, 21(5):358-367, May.

Keedy, J.L., Richards, I. (1982): A Software
Engineering View of Files, Australian Computer
Journal, 14, 2.

Keedy, J.L., et al. (2000): Software Reuse in an Object
Oriented Framework: Distinguishing Types from
Implementations and Objects from Attributes, Proc.
Sixth International Conference on Software Reuse,
Vienna.

Kiczales, G. et al. (1997): Aspect-oriented
programming, Proc. European Conference for
Object-Oriented Programming, Finland (Lecture
Notes in Computer Science, vol. 1241). Springer.

Mishra, P., Eich, M.H. (1994): Taxonomy of views in
OODBs, Proc. ACM Computer Science Conference.

Richardson, J., Schwarz, P., Cabrera, L. (1992):
CACL: Efficient Fine-Grained Protection for
Objects, Proc. OOPSLA Conference.

Rosenberg, J., Abramson, D. A. (1985): The
MONADS Architecture: Motivation and
Implementation, Proc. First Pan Pacific Computer
Conference, p. 4/10-4/23.

Saltzer, J.H. (1973): Protection and the Control of
Information Sharing in Multics, Symposium on
Operating System Principles, Yorktown Heights,
NY.

Wilkes, M.V., Needham, R.M. (1979): The Cambridge
CAP Computer and its Operating System, North
Holland.

