A Case Study in AccessControl Requirements
for a Health Infor mation System

Mark Evered
Serge Bogeholz

School of Mathematics, Statistics and Computer Science
University of New England
Armidale, 2351, NSW, Audradia

Emai | :

Abstract

We present a detailed examination of the access
constraints for a smal real-world Health Information
System with the aim of achieving minimal access rights
for each of the involved principals. We show that, even
for such a relativdy simple system, the resulting
congtraints are very complex and cannot be expressed
easily or clearly using the static per-method access control
lists generaly supported by component-based software.
We derive general requirements for the expressiveness of
access constraints and propose criteria for a more suitable
access control mechanism in the context of component-
based systems. We describe atwo-level mechanism which
can fulfil these criteria

Keywords. access control, component, health information

system

1 Introduction

The devel opment of middleware technology has led to the
practice of constructing software systems as collections of
heterogeneous distributed components. Such systems are
increasingly used for database integration, decision
support systems, electronic commerce and many other
applications. In general, the information stored within the
components of these systems is sensitive and requires
some form of access control. This is particularly
important as the internet is increasingly used as the basis
for distributed systems and as the threat from hackers and
malicious software continues to grow. As wel as
protecting a system from these external thresats, the access
control should also ensure compliance with privacy laws
and ideally, should guarantee that each user with access to
the system uses the information only exactly as required
for ther role within the organisation.

Despite the sensitivity of the data and the growing threat,
relatively little attention has been paid to the complexities
of rea-world access constraints in middleware

Copyright © 2004, Australian Computer Society, Inc. This
paper appeaed a the Austrdasian Information Security
Workshop 2034 (AISW 2004, Dunedin, New Zealand.
Conferences in Research and Practice in Information
Technology, Vol. 32, James Hogan, Paul Montague, Martin
Purvis and Chris Steketee, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is
included.

{mar kev, serge} @rcs. une. edu. au

development. Systems aich as OMG’'s Corba (Blakley
2000 and Sun's Enterprise Java Beans (Hartman 2001)
include aform of accesscontrol list (ACL) but these tend
to be add-on features which remain limited and inflexible.
Much attention has been given to encryption techniques
but, while encryption is cetainly important, it proteds
only the ammunication and authentication in the system.
It provides only the basis for a seare access control
medanism.

In this paper we present a @ase study of the accesscontrol
requirements for a Health Information System in a small
aged carefacility in rural New South Wales. Theaim isto
spedfy predsdy the minimal access requirements for
each of the involved principals and to use this as a basis
for asesdgng how well the mnstraints can be epressed
and enforced with existing midd eware technol ogies.

We have tosen to investigate afacility which has drict
procedures and policies in place for compliance with
privacy laws but which, as yet, uses no computer system
at all. All information is currently held on paper in filing
cabinets with accessphysically controlled by the manager
of the institution. The advantage of choosing a paper-
based facility for the ase study is that no compromises
have been made to adapt the access congtraints to the
limitations of a computer system.

We begin in the next sedion by briefly reviewing the state
of the art in accesscontrol for component-based systems.
Sedion 3 describes the aged care facility, identifies the
data and principals involved and describes the access
constraints for each of the principals. In sedion 4 we
formulate some generd kinds of access constraint which
can be derived from the @se study and in sedion 5
outline some requirements for a mechanism which is able
to expressand enforcethese kinds of constraintsin a dea
way. Sedion 6, gives an overview of and comparison
with related research.

2 Access control in
systems

Traditionally, accesscontrol has been expressed in terms
of read/write access This is true for the files gored in a
standard file system and aso for the attributes associated
with a record in a database system. An object-oriented
approach can be used to support a finer-grained, higher
level form of accesscontrol than this.

component-based

A component in a distributed applicaion can be viewed



as an objed containing (posshly persistent) data, hidden
by encapsulation and accesshle via interface methods.
This allows the accesscontrol to be expressd in terms of
the interface methods of the object, which can be
meaningful, applicaion-level operations associated with
the object in the red world. So, for example, we may
define a perdstent object which implements patient
recrds in a Health Information System with methods for
adding a new patient, adding atreament for a patient, etc.

(Fig. 1).

addPatient

delete addMedica
Patient
Data
addT reatment patientsinRoom
computeBill | getMedication

Fig.1 A persistent object for patient infor mation

Note that this objed contains the data for a set of patients
rather than representing the data of a single patient. So,
for example, the setRoom method has a parameter
indicaling which petient is meant and a parameter giving
the room number for that patient. This concept of a
container object isimportant for anumber of reasons. One
reason is that some operations involve more than a single
patient. An example here is the patientsinRoom method
which returns a list of the patients who are sharing a
particular room. Ancother reason has to do with
persistence It is not practical to make each individual
patient record into an independently persistent objed. In
fact often this not even desirable since the data may
actually be stored in a database system with the object
serving as a wrapper which hides the implementation and
offers the high-level operations. Findly, for seaurity and
consistency, we want to ensure that no reference to data
for a single patient can be retained and manipulated by a
client independently of accessviathe wntainer.

The accessrights to this Patients object can be granted on
the basis of the roles of the principas within the
organisation. Software running on behaf of an
adminigrative assstant at a hospital may, for example,
have the right to invoke the addPatient method and the
patientsinRoom method. For a nurse, access to the
getMedication method would be allowed while only a
doctor would have access to the addMedical method to
add an entry to a patient's medical records. An X-ray
technician would be all owed to invoke the addTreatment
method which adds information bath to the medical
information and the bil ling information of a patient.

This idea of limiting access on the basis of interface
operations goes back as far as Jbnes and Liskov's (1978
sugeestion of a datic type-based constraint mechanism
and Kealy's and Richards' (1982 semantic operations
for persigtent file objeds. Some form of method-based
access control has been incorporated into most

contemporary middleware mechanisms. The COM+
seaurity mechanism offers ‘per-method access control
lists which rewrd, for each method, a list of users
allowed to invoke that method (Eddon 199). In Sun’s
EJB, a set of roles can be defined in a deployment
descriptor together with alist of the methods of the bean
which can be invoked for each role (Hartman 2001). In
the Corba Seaurity Service there is an additional level of
indiredion with principals mapped to attributes, attributes
mapped to rights (for a cetain domain) and rights mapped
to interfaces or interface methods (Beznosov 1999.

These mechanism clealy offer a finer-grained access
control than a simple read/write approach but the question
nevertheless remains as to how well they support the
kinds of accesscongtraint required in real applications. It
is easy to present a simplified model as in the above
diagram, but the definition of such an object for the
requirements of a red system is considerably more
complex.

3 A simpleapplication
3.1 Overview

The @se study is based on a Health Information System
for an aged-care facility in rural New South Wales,
Audtralia. The facility offers sngle room accommodation
for some 30 resident. Administrative duties including the
formulation of procedures and policies are handled by a
manager who was the primary source for the case study
information. Residents are caed for by health care staff, a
nurse and vdunteegs with visits by doctors and, where
necessary, physiotherapists.

The facility currently uses only paper rewrds. The
information stored includes personal, financia and
medical information about each resident and contact
detail s for the staff and visiting professonals. For the sake
of simplicity, we have cosen to ignore the administration
of daff salaries and aher financiad aspeds of the
ingtitution in order to concentrate on the processng of the
data concerning the cae of the residents.

The proposed eledronic version of the system is intended
to completely replace the use of paper, providing intranet
accessto the HIS information stored on a server system.
One PC will be used by the manager and a number of PCs
will be available for use by the hedth care staff. Doctors
and physiotherapists will make use of mobile devices
which hook into the network dynamically.

The am in formulating the access contraints for the
various principals is to maintain at least the gtrictness of
the aurrent paper-based system and, idedly, to achieve a
strict nead-to-know access sheme. Before procealing to
the accessrules, however, it is necessary to describe more
fully the data which needs to be stored for each resident.

3.2 Data

There ae two hasic kinds of data maintained for each
resident. The first is (relatively) static data entered into
the system when a resident is admitted. This includes
persona details such as name, sex, religion etc., medical
insuranceinformation and past medicd reaords.



One important sub-category of this initial data is the
emer gency details. Aswell as medical information such
as blood group, alergies etc., and contact detail s for the
resident’s doctor, this includes the mntact details of a
responsible person (formaly referred to as next-of-kin)
who is to be mntacted in emergencies and who, if the
resident is not mentally capable, can make dedsions and
provide signatures on behaf of the resident. Currently, a
spedal cad system is used to make this information
available very rapidly.

Before admittance a chedlist of this initial information
and a legal agreament must be signed by the resident (or
the responsible person). In the dedronic system, these
signatures are to be realised by a method invocation
(represented at the user interface by a mouse dick on an
acceptanceform).

The seaond kind of resident information is that which is
used and updated in the normal day-to-day running o the
facility. Most of this is represented by three sets of
information:

Thecare plan

This is a working document that contains detailed
information and instructions regarding the day-to-day care
of theresident, eg. what asgstenceis required with meals,
hygiene dc. A cae plan is started for each resident on
admisson and is updated on aregular basis. Old versions
of the care plan are achived.

Progress notes

These ae observational entries covering such aspeds as
physical mohility, appetite, behaviour, mood and the
general state of the resident. Progress notes are used to
update the cae plan. Progress notes older than one year
are dso archived.

Medical records

A number of different doctors visit the facility with one
doctor visiting each week on ‘clinical day’. Residents can
choase which of these doctors they wish to attend them.
The facility requires that each resident undergo a medical
examination at least every six months and medication is
reviewed at least every three months After each
examination the doctor adds an entry to the medical
recrds of the patient. Currently these records are kept in
dugi cae with one @mpy in the facility and ancther kept by
the appropriate doctor. The doctor’'s copy additionally
includes private notes for each of his’her patients. In the
eledronic version thisduplicaion isto be diminated.

In the current paper-based system, medical entries older
than one year are achived and filed away in a locked
room. Recant medical entries are stored in a locked filing
cabinet in a more accesshle location with access
controll ed by the manager.

3.3 Accessrules

M anager

The manager has the broadest accessto the information,
including access to personal, financia, clinica and
medical information about each resident. This does not

mean, however, that she has unrestricted access Although
she can enter the past medical recmrds when a resident is
admitted, she canot subsequently add medicd entries to
the system. In the current paper-based system, this is
prevented by requiring that any new entry be signed by
the doctor making that entry. Also, she canot view the
private notes of doctors and clealy she canot sign the
legal agreement on behalf of aresident.

Only the manager is al owed to add a new resident to the
system and to start or update the cae plan of a resident.
The cae plan is updated in consultation with the resident
or the responsible person.

Only the manager is allowed to deete the information
about a resident but here also that right is restricted.
Privacy laws require that the information be held for a
cetain period after a resident leaves the facility. This
period is sven years for someone who is not of
Aboriginal or Torres Strait Isander descent and nine
years for someonewhoiis.

Health Care Workers

The hedth cae workers are required to sign a
confidentiality agreament before they have accessto any
resident data. Their main form of accessis to view the
care plan for each resident and to add progress note
entries based on their observations. Accessto emergency
detail sisavailable for al staff.

Health care workers can view recent medicd reards of
residents (up to ane year old) but cannot normally view
older medical information. For a spedal purpose, access
to an older medicd recrd can be sought and obtained
from the manager.

Because of the physical access control in the current
paper system, the manager has an overview of who has
accessed what information. In an eledronic system this
overview must be supdied by some form of logging of
accesses and access attempts. Clealy, the manager does
not wish to be informed about every access but some
logging is dill necessary. So, for example, the manager
should be made aware of repeated attempts by a hedth
care worker to accessinformation beyond their rights.

Doctors

A visiting doctor has accessto all the medical information
of residents who are his’er patients and can add entriesto
their medical records. Doctors can also add private notes
about a resident, which, on the basis of doctor-patient
confidentiality, are not visible to hedth care staff or the
manager. Doctors need not sign a nfidentiality
agreement sincethey are bound hy a code of professonal
conduct.

Occasionally, due to pressng circumstances, it may be
necessary for a visiting doctor to examine a resident who
isnot normally hisher patient. This is permitted with the
consent of the resident or the responsible person and the
neotification of the manager. The doctor then has
temporary access to the resident’s medical reards (but
not to the private notes of the resdient’s usual doctor).



Residents

The principals involved in an information system are
usualy thought of as gaff members of a certain
organisation. Privacy laws require, however, that a person
should have full accessto any information stored about
them (unless the well-being of a third party would be
jeopardised by reveali ng the information).

In our case study this means that the residents themselves
must also be regarded as principals for whom we define
access rights. In the aurrent paper system, al the
information stored about a resident is accessble to the
resident by arrangement with the manager. The nedl to
make this arrangement is only to allow the manager and
resident to set atime that is convenient to bah of them.

In an eledronic system we @n allow residents to hook
into the network at any time as long as they can view only
their own data and cannot make abitrary changes. This
includes the right to view even the private notes entered
by a doctor.

Others

For the sake of brevity we will not discussin detail the
accessrights of all the other principals. These include the
nurse, visiting physiotherapists, volunteer helpers and the
responsible person for each resident. In alarger institution
some of the duties of the manager would be performed by
adminidgrative staff but in this facility, such staff are not
necessary.

For a full discusson of principals and the crresponding
accessrules £e(Bogeholz, 2003).

4  General access control requirements

4.1 Methods of the Residents object

In this ®dion we discuss how the resident information
described above @n be stored in a persistent objed with
appropriate interface methods providing the operations
required a the application level. We then proceed to
describe a number of basic kinds of access constraint
which need to be imposed on the invocation of the
methods in order to enforce the access rules described
informally in the previous ®dion.

The fall owing Java interface type is not the full definition
of the Residents object. Rather it is intended to gve an
indication of the nature of the interface ad to list
example methods which are relevant to the subsequent
discusson of access control. The full interface definition
of the Residents object and ather objects comprising the
HIS system, together with a description of their
implementions are given in (Bogeholz, 2003.

public interface Residents {
int newResident();
voi d set Name(int key, String nane);
voi d set Descent (i nt key,
bool ean abori gi nal Torres);
voi d setDoctor(int key, int doctorld);
int getDoctor(int key);
voi d gi veConsent (i nt key);

voi d addMedi cal Treat nent (i nt key,

String treatnent,

int enteredBy);
String get Medi cal Treatment (i nt key,

int index);
voi d adj ust CarePl an(i nt key,
String carePl an);

String get EnergencyDetail s(int key);

}

The newResident method adds a new resident record to
the object and returns a key for that record. The key is
given as a parameter in many of the other methods to
identify which resident is intended. Some Sring
parameters and results are in XML format to provide a
standard way of passng structured information.

The addMedical Treatment method adds an entry to the
list of medical treatment entries for a resident. It has a
parameter for indicaing who is making the entry. The
getMedical Treatment method can be used to retrieve this
information. An index value of 0 means the most recent
entry, 1 means the previous entry etc.

4.2 Accessto asubset of methods

This is the fundamentd kind o access restriction in an
objed-oriented approach to access control. So, for
example, nobady but the manager should be dlowed to
invoke the first four methods shown above and only a
doctor should be able to invoke the addMedical Treatment
method.

A particularly interesting use of this kind o restriction is
in redisng sgnatures. The giveConsent method is
invoked by a resident to register consent to the legal
agreament with the aged carefacility. If the accesscontrol
medanism can guarantee that only the resident can
invoke this method, then the fact that it has been invoked
can be regarded as a signature. The same mechanism can
be used by health care gaff for signing the confidentiality
agreement.

4.3 Access dependent on attribute value

Sometimes the question of whether an access $iould be
allowed to proceal depends on the information stored for
a particular resident. So, for example, the manager is only
allowed to invoke the delete method for aresident if the
values gored for ‘date of leaving facility’ and ‘descent’

indicae that privacy laws would permit that deletion.

Similarly, a doctor may (normally) only invoke the
getMedical Treatment method for aresident for whom that
doctor has been stored as the resident’s chosen doctor. In
alarger ingtitution we might want to restrict the access of
hedth care staff to information of only those residents in
the wing/ward/department to which a member of staff is
assgned.

4.4 Accesswith time constraints

A visiting doctor cen treat a resident who is not normally
his’her patient if there is a pressng reason and the
resident agrees. This access right should not be
permanent, however. It is aufficient if the doctor can



access the relevant information on the day of the
examination. The access right should subsequently expire.

The same situation exists for a health care worker who
has been granted permission to retrieve medical records
older than one year. This permission is for a special
reason and should be limited in time.

4.5 Accessbased on call history

Like the congtraints in 4.3 above, this kind of constraint
depends on the state of the object but here the relevant
factor is not the attributes of the information being stored
but the allowed sequence of method invocations. So, for
example, a hedth care worker cannot invoke any method
to retrieve information about any resident unless he/she
has aready invoked the method for signing the
confidentiality agreement.

A special case of access based on call history is the
permission to invoke a method only once. The manager
should not be able to re-set the ‘descent’ information once
the method to set this value has been invoked and the
value signed-off by the resident. Similarly, the invocation
of the method to sign the legal agreement should only be
invoked once by a resident.

4.6 Accesswith fixed parameter value

A resident is allowed to invoke any of the methods which
return information stored about him/her but, of course,
has no access to information stored about other residents.
This implies that a resident only be allowed to invoke
methods with a particular value of the key parameter.

Similarly, each doctor must be restricted to passing a
certain value for the enteredBy parameter of the
addMedical Treatment method, namely, the value which
represents the identity of that doctor.

4.7 Accesswith logging

Sometimes it is desirable to keep a record of who has
done what and when with a persistent object. In a high-
security context it may even be necessary to record every
invocation of an object but in most information systems
this would result in a flood of data which would tend to
hide rather than expose the accesses of interest.

In this case study, the manager indicated that she would
wish to be informed about certain invocations of the
Residents object by health care workers and volunteers.
So, for example, a record must be kept of exactly when
and by whom emergency details for a resident have been
retrieved.

Logging may be required both for successful and for
unsuccessful method invocations. The manager also needs
to be informed if amember of staff repeatedly attempts to
perform some operation on the object for which they have
No permisison.

5 Towards an ideal access control

mechanism

5.1 Criteria

Clearly, a single case study is not sufficient to motivate
the design of an access control mechanism. Nevertheless,

it isingtructive to consider what such a mechanism would
need to offer to cater for even such a small example
system. As well as being able to express the kinds of
access control listed in the previous section, we claim that
an ideal mechanism must also fulfil a number of further
generic security criteria:

Concise

Access control isno useif it isnot correct. If it is possible
to express complex congtraints only in an awkward or
long-winded way, then errors are likely to be made. Our
first criterion is therefore that the mechanism should
allow the congtraints to be expressed in an easy, concise
way. Thisis especialy true for the most common kinds of
congtraints. In general, mechanical repetition or
extraneous effort in the expression of the rules are
indications that something isamiss.

Clear

Closdly related to concise expression is the clarity of the
mechanism. Access congraints must be not only
expressed but also checked. Idedly, at least for the most
common cases, it should be apparent at a glance what the
rule is saying and therefore whether it is correct.

Aspect-oriented

A third criterion is that the access control information
should be separated from the application code, not
embedded into or mixed up with it. This corresponds to
the idea of aspect-oriented programming (Kiczales 1997)
where separate aspects of a program such as security and
synchronisation are formulated separately and then
combined automatically by an ‘aspect weaver'.

This separation makes both the application code and the
access control easier to understand and aso allows the
same application object to be used in different security
contexts with different accessrules.

Fundamental

Ideally, an access control mechanism is integrated at a
fundamental level within a system. For a component-
based system this means that the access control should be
integral to the middleware rather than an optional add-on.
One advantage of this is that developers are forced to
address access control questions from the very sart.
Ancther advantage is that it is then more difficult for
hackersto ‘ get around’ the mechanism.

Positive

The access rights of a principa should be expressed in
terms of what that principal is alowed to do rather than
what he/she is not allowed to do. This ensures that the

default is that no access at al is allowed and that each
permission must be explicitly listed.

Need-to-know

A strict need-to-know approach to access control is not
only desirable in military environments. Financial
transactions and the manipulation of sensitive personal
data are increasingly being perfomed eectronicaly via
networks and users have aright to expect that no more of
their data is being revealed than is absolutely necessary



for a particular service.
Efficient

Clearly, a certain overhead will dways be involved in
performing access control checks but this overhead
should be kept a areasonable level.

5.2 Realisation

This case study demonstrates that access congtraints in the
real world, if taken serioudly in terms of the need-to-know
principle, can be very complex, even for a smal
information system. Standard access control mechanisms
for component-based systems are based on a static per-
method access control list and cannot easily support these
complex kinds of congtraints. It is possible to add more
methods or more objects to the system in an attempt to
achieve the desired result but if thisis done in an ad-hoc
way then many of the criterialisted in section 5.1 will be
violated and, as a result, errors and loopholes will be
introduced.

Thisis reminiscent of the attempt to use path expressions
to specify the synchronisation congraints for objects.
Here a so, the constraints are expressed solely in terms of
method names. For simple cases this is sufficient and
even degant but for redlistic examples such as
reader/writer synchronisation with priorities, the only
solution is to introduce additional methods which have
nothing to do with the application code (Habermann
1974).

One way to enable complex access control constraints
while keeping them separate from the application code is
to use some form of security proxy. All method
invocationsto an object are passed through this proxy and
checked before being passed on to the underlying object.
Such a security proxy still has a number of problems in
terms of the above criteria, however. One problem is that
the clarity is hindered by the need to program all the
congtraints for all of the principles in a single object.
Anocther problem isthat al of the methods are ill visible
to al of the principles even if they are not invocable. This
violates a strict need-to-know approach and complicates
the use of the object. This problem is magnified by the
fact that an object in areal system may easily have over
100 methods on its interface. Thirdly, such a proxy
mechanism is not generaly an integra part of the
component architecture but rather an add-on feature (if
availableat dl).

In order to fulfil al the criteria we propose a two-level
approach. A flexible low-level mechanism can guarantee
the security and efficiency of the approach while a high-
level language construct can enable conciseness and
clarity to support correctness.

5.2.1 Bracket capabilities

Our approach for the lower level is the bracket capability
mechanism. The concept behind this mechanism is
presented more fully in (Evered 2002a) and an
implementation in the Opsis system is described in
(Evered 2002b). The mechanism is based on object
capabilities rather than ACLs because capabilities
enhance and simplify security by unifying object naming

with the protection mechanism (Wilkes 1979). Our
capabilities differ from traditional sparse capabilities in
that they contain not an object identifier, but an identifier
for a (capability) server which knows the location of the
object. Thisindirection allows for object migration. When
a persistent object is created, a capability for the object is
created and registered with the capability server. The
capability server also contains other information about
accessing the object, including the type of the object as
seen by the possessor of that capability.

To gain access to an object, the object is ‘opened’ using a
capability. For example:

Residents res = (Residents) c.open();

where c is a variable of type Capability . The object
can then be accessed via invocations of its interface
methods. For example,

res.setName(12345, “Smith, John”);

So far, thisis not much different from other mechanisms
based on object capahilities. The main difference is seen
when the possessor of a capability wishes to grant a more
restricted view of the object to other users in the system.
This is done by a call to the refin e method. Each
persistent object, as well as implementing an interface
such as Resident s aso implements the standard
interface Persistent which includes methods such as
deleteObject , deleteCapabilit y and refin  e.
Therefine  method iscalled asfollows:

x = (Persistent)
Capability cref =

c.open();
x.refine(interface, class);

where interface denotes the type with which the
persistent object is to be viewed (when opened using the
capability cref) and clas s denotes the class of an
object through which calls to the persistent object will
pass when invoked via cref . Theresult of the refin e
call isdepicted in Fig. 2.

| orig. capability
| refined capability Bracketing
Interface Object

Fig 2: The result of the'refine' operation

It can be seen that, as well as having arestricted interface,
cals using the capahility cref are directed through a
bracketing object. This bracketing object is stored
together with the underlying component in the same way
that access rights are stored with the component for other
sparse capability mechanisms.

A copy of cref can be given to the principals who are to
have this kind of access. By creating as many such new
capabilities as we need, we can give each principal
exactly the interface and the bracketing code required.

So, for example, we can achieve the same effect as



standard per-method ACLs by listing only certain
methods in the interface. In the case of bracket
capabilities, however, the missing methods are not even
visible to the principal. Additionally, we can achieve
more complex access congtraints by providing whatever
checks are necessary in the code of the bracketing object.

We can compare this approach to the simple per-method
approach of Corba and EJB in which more complex
congtraints are generally programmed in the code of the
component to be protected (Table 1).

As can be seen, the use of bracket capabilities can fulfil
many of the criteria but the access constraints are ill
written as normal program code which is often difficult to
understand as well as tedious and repetitious and this in
turnislikely to lead to errors. For thisreason, we propose,
as the second level, a specia language construct for
formulating access constraints.

522 A
constraints

In order to fulfil the requirements of conciseness and
clarity, we define an ‘access construct’ which provides a
high-level description of the access congtraints and is
automatically trandated into the class to be used as the
bracketing class for a particular capability. For the most
complex cases, this construct can contain arbitrary
program code, but for the most commonly occurring
cases, such as described in section 4, it is designed to be
asclear aspossible.

language construct for access

Criterion Bracket Simple Per-
Capabilities | method ACLs

Concise poor poor

Clear poor poor

Aspect- good poor

oriented

Fundamental | good poor

Positive good good

Need-to- good fair

know

Efficient good good

Table 1: Bracket capabilities vs standar d approach

So, for example, the access given to a doctor will include
the following:

interface DoctorView {
String get Medi cal Treatment (i nt key,

int index);

access DoctorAccess to Residents
provi des Doctor Vi ew {
int doctorld,
pre { check(doctorld==get Doct or (key)) }

}

where the interface defines the doctor’s view of the object
and the access construct defines further constraints. In this
case the constraint is that the doctor associated with this
patient is the same as the doctor making the method
invocation.

A formal definition of the access construct is beyond the
scope of this paper. Informally, it is equivalent to a Java
class definition with the addition of a pr e and/or a post
section for defining actions to bracket a method
invocation. It can aso contain variable values to be
substituted for parameters of the methods of the bracketed
object. This is adequate for clearly expressing al the
congtraints of the case study without awkwardness or
repetition.

Given this second level on top of the bracket capability
mechanism, the comparison with the standard approach is
as shown below (Table 2).

Criterion Access Simple Per-
Construct method ACL s

Concise good poor

Clear good poor

Aspect- good poor

oriented

Fundamental | good poor

Positive good good

Need-to- good fair

know

Efficient good good

Table 2: Access construct (on top of bracket
capabilities) vs standard approach

6 Rdated work

As mentioned above, standard middleware systems such
as Corba, COM+ and EJB include the possihility of a per-
method, role-based access control list for limiting the
access of principals to interfaces or objects. In some
cases, fixed forms of rule-based access, such as access at
certain times of day, are supported. These correspond
only to simple, special cases of access control. No direct
equivalent of the complex restrictions required for the
case study are supported. No direct equivalent of a
restricted view of the object is supported for hiding the
existence of unallowed methods and parameters from the
principals. In both of these middleware technologies, the
use of ACLs instead of capabilities makes the security
mechanism an add-on feature rather than fundamental and



detracts from the seaurity.

Objed capabilities have been used in a number of
reseach systems, most notably the Monads sg/stem
(Rosenberg and Abramson, 1985 and for the ‘proteded
subsystems’ in the Multics gstem (Saltzer, 1973 but
these capabilities require achitedural support (or at least
a speda operating system kernel) and so are not
appropriate for heterogeneous networks. Brose (1999 has
proposed a language-based extension to the Corba
seaurity model in which the dl owed ‘views' for each user
are defined in terms of the methods of an ohjed type.
Like the Monads and Multics gstems and the ACL
approaches of Corba and EJB, however, these support
only simple per-method accesscontral. In al cases, all of
the methods are visible to all principals even if they may
not be invoked and parameters cannot be fixed to certain
values.

The ncept of ‘bracketing’ for applying access
congtraints has been suggested bath as a programming
language mnstruct (Keedy et a., 2000) and as a form of
‘design pattern’ (Gamma, 19995. The suggested
progamming language approach is interesting in
supporting the reuse of the bracketing code but it does not
allow modification of the interface to the underlying
objed or a mncise ad clea expresson of access rules.

One use of the proxy design pattern is as a protedion (or
accesg proxy. In this case, the interfaceisidentical to the
uncerlying objed. The proxy deddes whether the access
can procee and returns an eror if it should not.
Bracketing oljeds which modify theinterface offered to a
client cannot be seen as drict proxies. They can be seen as
spedal cases of the adapter pattern but whereas an adapter
isusualy used to provide the view the dient would like to
have of the underlying dbject, in these Gases the adapter is
providing the view the client isallowed to have.

The @ncept of providing a user with a restricted view of
persistent data is reminiscent of database systems.
Traditional database views are atribute-oriented and not
method-oriented, however, and therefore cannot support
the flexible kinds of access control required for our
example. This attribute-orientation is true even for most
objed-oriented databases (Mishra and Eich, 1994.
Notable exceptions are the method-based modd of
Fernandez, Larrondo-Petrie and Gudes (1993) and the
CACL system of Richardson, Schwarz and Cabrera
(1992. The former provides an ‘Exeaute’ accessright for
invoking amethod of a persistent objed. Thisissimilar to
the per-method access control of contemporary
middleware systems. The latter supports the mncept of an
‘authorization type' as a restricted view of an object but
does not alow parameter constraints, state-dependent
congtraints etc. to be spedfied as part of the view.

7  Conclusion

Per-method ohjed-based access control allows access
restrictions to ke epresed in terms of high-levd,
application-relevant operations on the cmponents of a
software system. This is a onsiderable improvement on
the data-oriented read/write access redtrictions in file
systems and in most database systems. Nevertheless the

guestion arises whether the access constraints of real
information systems can adequately be expressed merdy
by spedfying a method subset for each principal to each
interfaceor objed of the system.

We have presented a @se study of the access constraint
requirements of a very simple red-world hedth
information system. The information system involves the
resident data for a small aged care facility and the access
to be permitted for doaff members, for visiting
professonals and for the residents themsalves. We have
chosen a system which is currently still paper-based so
that the access procedures and policies have not been
influenced by the limitations of contemporary information
systems ftware.

The @se study shows clearly that the access congtraints
for even such asimple system, if expressed in terms of the
minimum access required for each principa, are
extremely complex. We @nclude that the per-method
accesscontrol lists of standard component technology are
not adequate for expressng such rea-world access
constraintsin a clea, concise manner.

We have ategorised the kinds of accessrulesrequired for
the @ase study and on the basis of these and further
generic criteria, have formulated some requirements for
an ideal accesscontrol mechanism. We propose a form of
access adapter which combines the expressveness of
general program code with the clarity of a dedarative
approach for the most common cases.

Ongoing work includes further case studies to investigate
the adequacy of the access construct as currently defined
and work on a Java implementation of the mechanism.

References

Beznosov, K., Deng, Y. (1999: A Framework for
Implementing Role-based Access Control using
CORBA Seaurity Service Proc. 4" ACM Workshop
on Role-based access control, Fairfax.

Bogeholz, S. (2003: Access Control in a Distributed
Health Information System: A Case Sudy, Masters
Thesis, University of New England, Armidale.

Blakley, B., Blakley, R., Soley, R.M. (2000: CORBA
Security: An Introduction to Safe Computing with
Objects, Addison-Wedley.

Brose, G. (1999: A View-Based Access Control
Modd for CORBA, in: Jan Vitek, Christian Jensen
(eds.), Secure Internet Programming: Security |ssues
for Mobile and Distributed Objects, LNCS 1603,
Springer.

Eddon, G. (1999: The COM+ Seaurrity Model Gets
You Out of the Seaurity Programming Business
Microsoft Systems Journal, November.

Evered, M. (2002: Bracket Capabilities for Distributed
Systems Seaurity, Proc. 25" Australasian Computer
Science Conference, Melbaurne.



Evered, M. (2002): Opsis. A Didributed Object
Architecture Based on Bracket Capabilities, Proc.
Conference on Technology of Object-Oriented
Languages and Systems, Sydney.

Evered, M. (2003): Flexible Enterprise Access Contral
with  Object-oriented  View  Specifications,
Australasan Information  Security  Workshop,
Adelaide.

Fernandez, E.B., Larrondo-Petrie, M.M., Gudes, E., A.
(1993): Modd of Methods Access Authorization in
Object-oriented Databases, Proc. of the 19th VLDB
Conference, Dublin.

Gamma, E. e al. (1995): Design Patterns, Addison-
Wesley.

Habermann, A.N., Campbel, R.H. (1974): The
specification of process synchronization by path
expressions, Lecture Notes on Computer Science, 16.

Hartman, B., Hinn, D.J, Benznosov, K. (2001):
Enterprise Security with EJB and CORBA, Wiley.

Jones, A., Liskov, B. (1978): A language extension for
expressing  condraints  on data  access.
Communications of the ACM, 21(5):358-367, May.

Keedy, JL., Richards, . (1982):. A Software
Engineering View of Files, Australian Computer
Journal, 14, 2.

Keedy, JL., e a. (2000): Software Reuse in an Object
Oriented Framework: Digtinguishing Types from
Implementations and Objects from Attributes, Proc.
Sxth International Conference on Software Reuse,
Vienna.

Kiczaless, G. e a. (1997): Aspect-oriented
programming, Proc. European Conference for
Object-Oriented Programming, Finland (Lecture
Notes in Computer Science, vol. 1241). Springer.

Mishra, P., Eich, M.H. (1994): Taxonomy of views in
OODBs, Proc. ACM Computer Science Conference.

Richardson, J, Schwarz, P., Cabrera, L. (1992):
CACL: Efficient Fine-Grained Protection for
Objects, Proc. OOPSLA Conference.

Rosenberg, J., Abramson, D. A. (1985): The
MONADS Architecture: Motivation and
Implementation, Proc. First Pan Pacific Computer
Conference, p. 4/10-4/23.

Saltzer, JH. (1973): Protection and the Control of
Information Sharing in Multics, Symposium on
Operating System Principles, Yorktown Heights,
NY.

Wilkes, M.V., Needham, R.M. (1979): The Cambridge
CAP Computer and its Operating System, North
Holland.



