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Abstract

In typical applications, a priority queue is used to
execute a sequence of n insert , m decrease, and n
delete-min operations, starting with an empty struc-
ture. We study the performance of different prior-
ity queues for this type of operation sequences both
theoretically and experimentally. In particular, we
focus on weak heaps, weak queues, and their re-
laxed variants. We prove that for relaxed weak heaps
the execution of any such sequence requires at most
2m + 1.5n lg n element comparisons. This improves
over the best bound, at most 2m + 2.89n lg n elem-
ent comparisons, known for the existing variants of
Fibonacci heaps. We programmed six members of
the weak-heap family of priority queues. For random
data sets, experimental results show that non-relaxed
versions are performing best and that rank-relaxed
versions are slightly faster than run-relaxed versions.
Compared to weak-heap variants, the corresponding
weak-queue variants are slightly better in time but
not in the number of element comparisons.

Keywords: Data structures, priority queues, weak
heaps, weak queues, shortest paths

1 Introduction

A priority queue is an important data structure that
is used for implementing many fundamental algo-
rithms, like Dijkstra’s algorithm for computing short-
est paths (Dijkstra 1959) and Prim’s algorithm for
finding minimum spanning trees (Prim 1957). For a
comparison function operating on a totally ordered
set of elements, priority queues often support the
operations insert , delete, delete-min (extracting an
element with the minimal value), and decrease (de-
creasing the value of a given element).

For some applications, it is natural to require
find -min (determining the location of the current
minimum) to be a constant-time operation. This
means that the other operations are responsible for
updating the pointer to the minimum after each modi-
fication to the data structure. However, in many
applications, fast find -min is not essential since it
is always followed by delete. Hence, instead of up-
dating the minimum pointer after each modification,
delete-min finds the minimum before the deletion.
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To guarantee a theoretically-optimal behaviour
in applications, as those mentioned above, a pri-
ority queue that provides decrease in O(1) (amor-
tized or worst-case) time must be used. Fibonacci
heaps (Fredman and Tarjan 1987) were the first pri-
ority queues that achieve this. In fact, they pro-
vide optimal amortized time bounds for all oper-
ations (O(1) per insert and decrease, and O(lg n)
per delete-min, where n is the size of the heap).
In previous experimental studies (Stasko and Vitter
1987, Cho and Sahni 1998, Bruun et al. 2010), bi-
nary heaps (Williams 1964), pairing heaps (Fredman
et al. 1986), leftist trees (Crane 1972), or weak queues
(Vuillemin 1978) have been reported to perform best,
even though none of them is theoretically optimal. In
addition, several recent papers present alternatives to
Fibonacci heaps and claim their superiority (Takaoka
2003, Haeupler et al. 2009, Chan 2009, Elmasry 2010).

In this paper we investigate the theoretical and
practical performance of weak heaps, weak queues,
and their relaxed variants. A perfect weak heap is
a binary-tree representation of a heap-ordered bino-
mial tree (Vuillemin 1978). A weak queue, as it was
named in (Elmasry et al. 2005), is a binomial queue
represented using binary trees, i.e. it is a collection of
perfect weak heaps. In general, a weak heap (Dutton
1993) is not necessarily perfect, i.e. its size need not
be a power of two.

Relaxed heaps were introduced by Driscoll et
al. (1988) to support decrease inO(1) worst-case time.
The basic idea, applied by Driscoll et al. to binomial
queues (Vuillemin 1978), is to permit some nodes to
violate heap order, i.e. the element stored at a po-
tential violation node may be, but is not necessarily,
smaller than the element stored at its parent. Driscoll
et al. described two forms of relaxed heaps: run-
relaxed heaps and rank-relaxed heaps. Run-relaxed
heaps achieve the same bounds as Fibonacci heaps,
even in the worst case per operation. For rank-relaxed
heaps, the O(1) time bound for decrease is amortized,
but the transformations needed for reducing the num-
ber of potential violation nodes are simpler than those
required by run-relaxed heaps.

We are interested in priority queues that support
all operations as efficiently as relaxed heaps. Fur-
thermore, we work towards optimizing the bounds on
the number of element comparisons needed to per-
form the underlying operations. The core difference
between our structures and those in (Driscoll et al.
1988) is that the latter rely on heap-ordered binomial
trees (Vuillemin 1978) while ours use pointer-based
weak heaps. In comparison to relaxed heaps, our
key improvements are twofold. First, we immigrate
the transformations of Driscoll et al. into the binary-
tree setting; we call the underlying forest of relaxed
weak heaps a relaxed weak queue. Second, to improve
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the bound on the number of element comparisons per
delete-min operation, we use a single pointer-based
weak heap instead of a weak queue, and show how
to perform the priority-queue operations accordingly;
we call the resulting structure a relaxed weak heap.
We remark that run-relaxed weak queues were intro-
duced in (Elmasry et al. 2005) and rank-relaxed weak
queues in (Edelkamp 2009). The description of both
weak-queue variants in this paper is a refinement to
the ones in the two technical reports.

We also show that relaxed weak heaps can be
made competitive to, and even improve over, all exist-
ing priority queues. Starting with an empty struc-
ture, the execution of any sequence of n insert , m
decrease, and n delete-min operations requires at
most 2m + 1.5n lg n element comparisons for rank-
relaxed weak heaps, while the best bound known for
Fibonacci heaps is 2m + 2.89n lg n element compari-
sons, and for other priority queues even higher.

Experimental results show that our implementa-
tions of weak queues and weak heaps are competi-
tive with highly-tuned implementations of binary, Fi-
bonacci, and pairing heaps, even in an application like
the computation of shortest paths. For weak queues,
one additional advantage is small space consumption.
We show that, at any given time, rank-relaxed weak
queues store at most one potential violation node per
level. This leads to the use of at most 2n + O(lg n)
full-length words and n words of lg lg n + O(1) bits
each, in addition to the space used by the elements.

The main body of the text consists of three
parts. After reviewing some related structures in Sec-
tion 2, we recall the functionality of relaxed heaps
and introduce relaxed weak queues as their binary-
tree-based variants in Section 3. In Section 4, we
introduce relaxed weak heaps as their single-heap
variants that achieve a better bound on the num-
ber of element comparisons performed. In Section 5,
we report the experimental results comparing our
priority-queue implementations to their natural com-
petitors, when computing the single-source shortest
paths using Dijkstra’s algorithm, and when handling
some other syntactic operation sequences. We end
the paper with a short conclusion in Section 6.

2 Related Structures

In the basic setting, we consider operation sequences
that consist of n insert , m decrease, and n delete-min
operations, starting with an empty structure. Using
some known data structures, reviewed briefly in this
section, our reference sequence can be executed in
Θ((m+n) lg n) or Θ(m+n lg n) worst-case time. The
difference between these two bounds is significant in
theory, but that seems not to be typically the case in
practice. For m = O(n) the bounds are the same, and
for m = Ω(n lg n) the difference is a logarithmic fac-
tor. Often, like in Dijkstra’s algorithm, the decrease
operations are conditional: Only if the given value
is smaller than the current value, a decrease opera-
tion is executed; otherwise, nothing is done. Hence,
data structures supporting decrease in Θ(lgn) time
are noteworthy candidates for everyday use.

Below, we give a summary of the related structures
that we compare against in this paper.

Binary heaps. Assuming that all insert opera-
tions are executed first, binary heaps can process
our sequence of operations in O((m + n) lg n) worst-
case time, involving at most m lg n + 2n lg n + 2n
element comparisons. Often in the literature, bi-
nary heaps are considered in a context where only
insert and delete-min operations are to be supported.

To support decrease (and delete), one must ensure
that pointers given to the elements remain valid; this
means that the elements are to be stored indirectly. In
a typical case, when operating on random data sets,
O(1) work is expected in connection with each insert
and decrease; and delete-min is expected to perform
lg n + O(1) element comparisons (when relying on a
bottom-up heapifying strategy).

Fibonacci heaps. With the potential function used
in (Fredman and Tarjan 1987), for our reference se-
quence, Fibonacci heaps can be shown to perform
at most 3m + 2.89n lg n element comparisons. How-
ever, using a slight modification, the bound can be
brought down to 2m + 2.89n lg n. The number of
trees in the heap can grow up to n, and a single
delete-min can take Θ(n) time. We can restrict the
number of roots to 1.44dlg ne, but decrease may then
require Θ(lg n) time in the worst case (Kaplan and
Tarjan 2008). Hence, Fibonacci heaps cannot match
the worst-case performance of run-relaxed heaps. Our
experiments show that the reference sequence can be
handled faster by a carefully-coded Fibonacci-heap
implementation than by an existing implementation
in LEDA (Mehlhorn and Näher 1999). In turn, we
raise the question about the reliability of experimen-
tal results reported in earlier studies that used an
implementation of Fibonacci heaps as a baseline.

Pairing heaps. In the theory community, the an-
alysis of pairing heaps has attracted lots of attention.
Fredman (1999) was able to show that the amortized
cost of decrease is not a constant. In spite of this, for
a long time, it has been known (see, e.g. (Stasko and
Vitter 1987)) that the practical performance of pair-
ing heaps is good. The number of element compari-
sons performed per delete-min, though O(lg n) in the
amortized sense, can be up to Θ(n) in the worst case.
In spite of the theoretical setback, because of its sim-
plicity and ease of implementation, a carefully-coded
pairing-heap implementation is practically relevant.

2-3 heaps. This data structure was one of the early
alternatives to Fibonacci heaps. It performs at most
2m+ 3n lg n+ n element comparisons when handling
our reference sequence (Takaoka 2003). A 2-3 heap
is also efficient in practice as verified by our experi-
ments. The main drawback is maintainability: very
few people understand the internals of its implemen-
tation, and accordingly are able to change its code.

Violation heaps. This data structure is one of
the recent alternatives to Fibonacci heaps (Elmasry
2010). The theoretical analysis hides larger constants
than those proved for Fibonacci heaps. However, this
can be an artifact of the analysis, not the data struc-
ture itself. Our experiments showed that in several
cases this data structure performs well.

3 Relaxed Weak Queues

A weak queue is a binomial queue (Vuillemin 1978)
implemented as a collection of binary trees. The root
of a tree has only one child, the right child if any,
which in turn roots a complete binary tree. Hence,
the size of every tree is a power of two. The rank of
a tree is the binary logarithm of its size. The distin-
guished ancestor of a node x is the parent of x if x is a
right child, and the distinguished ancestor of the par-
ent of x if x is a left child. The weak-heap ordering
enforces that no element is smaller than that at its
distinguished ancestor. These trees (with the weak-
heap-order property) are called perfect weak heaps.

Two basic primitives used in the manipulation of
perfect weak heaps are join and split . A join links
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two trees of rank r by making the root with the larger
value, say y, the child of the other root, say x. The
right subtree of x becomes the left subtree of y, and
the rank of x is increased to r + 1. A split is the
reverse of a join; a tree of rank r + 1 is divided into
two trees of rank r.

3.1 Registries

The data structure that keeps track of the tree roots is
called a root registry. In the standard implementation
(Vuillemin 1978), there is at most one tree per rank.
Several alternatives have been proposed to achieve
better per-operation bounds in the worst case (see,
e.g. (Driscoll et al. 1988, Elmasry et al. 2008a)). In
the implementation proposed in (Driscoll et al. 1988),
any number of trees per rank is allowed, but an upper
bound on the total number of trees is set. A root table
is maintained, which is a resizable array accessed by
rank. Each entry of the root table contains a pointer
to the beginning of a list of roots having this partic-
ular rank. For each entry referring to more than one
root, a counterpart is kept in a root-pair list.

It must be possible to add a root to a root regis-
try, extract a given root, and reduce the number of
roots when it exceeds a threshold. To support ex-
traction, each root should know its location within
the list where it is in. An easy way of implementing
the collision lists is to use the left-child pointer (which
is unused) and the parent pointer (which is also un-
used) of each root for linking. Then an extraction is
just a removal from a doubly-linked list. For reduc-
tion, the root-pair list is consulted and two trees of
the same rank are joined.

In a relaxed weak queue, the trees are not neces-
sarily weak-heap ordered; a marked node is poten-
tially weak-heap-order violating. A root is always
non-marked. The data structure that keeps track of
the marked nodes is called a mark registry. It must be
possible to add a new marked node to such a registry,
extract a given marked node, and reduce the number
of the marked nodes if it exceeds a threshold.

The key ingredient is a set of transformations used
to reduce the number of marked nodes (for a detailed
discussion, see (Elmasry et al. 2005)). Each trans-
formation involves a constant number of structural
changes. The primitive transformations are visualized
in a pictorial form in Figure 1. A cleaning transfor-
mation makes a marked left child into a marked right
one, provided its sibling and parent are both non-
marked. A parent transformation reduces the number
of marked nodes or pushes the marking one level up.
A sibling transformation reduces the number of mark-
ings by eliminating the markings of two siblings, while
generating a new marking at the level above. A pair
transformation has a similar effect, but it operates on
two non-sibling nodes of the same rank. The cleaning
transformation does not require element comparisons,
each of the parent and the sibling transformations in-
volves one element comparison, and the pair transfor-
mation involves two element comparisons.

For run-relaxed versions, we adopt a lazy strat-
egy where the number of markings is reduced by one,
if possible, as compensation for each new marking.
For rank-relaxed versions, we adopt an eager strategy
where the transformations are employed until they
can no longer reduce the number of markings.

3.2 Run-Relaxed Weak Queues

Let τ denote the number of trees and λ the number
of marked nodes. An invariant is maintained that
τ ≤ blg nc+ 1 and λ ≤ blg nc after each operation.
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Figure 1: Primitive transformations: a) cleaning
transformation at v, b) parent transformation at w,
c) sibling transformation at v, and d) pair transfor-
mation for y and z. Grey nodes are marked.

A marked node is a member if it is a left child and
its parent is marked. A marked node is a leader if its
left child is a member, and if it is either a right child or
a left child whose parent is non-marked. A maximal
chain of members preceded by a leader is called a run.
A marked node that is neither a member nor a leader
is called a singleton. To summarize, we divide the
set of nodes into four disjoint categories: non-marked
nodes, run members, run leaders, and singletons.

The mark registry can be implemented as follows
(Driscoll et al. 1988). All run leaders are kept in a
run list, and all run members are accessed via their
leaders. All singletons are kept in a singleton table,
which is a resizable array accessed by rank. Each
entry of the singleton table contains a pointer to the
beginning of a list of singletons having this particu-
lar rank. For each rank referring to more than one
singleton, a counterpart is kept in a singleton-pair
list. When a node becomes a singleton, a new item
pointing to this node is added to the appropriate list
of singletons and the singleton-pair list is updated if
necessary. To facilitate extraction, each node stores a
back pointer to its item once created. The worst-case
time of marking and unmarking routines is O(1).

Two types of compound transformations are used
to reduce the number of marked nodes: 1) the single-
ton transformation is used for reducing the number
of singletons, and 2) the run transformation is used
for making runs shorter. If λ exceeds the threshold,
the transformations can be applied to reduce λ by
one. The rationale behind the transformations is that,
when there are more than blg nc marked nodes, there
is a run of marked nodes, or there is at least one pair
of singletons that root a subtree of the same rank.
Hence, it is possible to apply one of the transforma-
tions. We show next how the primitive transforma-
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tions are employed in the two compound transforma-
tions. For all cases, at most two element comparisons
are performed to remove a marked node.

• Run transformation. When dealing with
marked nodes, the basic idea is to let the mark-
ings bubble upwards until two marked nodes
have the same rank. The runs cause a compli-
cation in this process since these can only be un-
ravelled from above. Let q be the leader of the
given run, r its left child, and p its parent. We
consider two cases:

q is a left child (zig-zig case). If the sib-
ling of q is marked, apply the sibling transforma-
tion at q and stop. If the sibling of r is marked,
apply the parent transformation at that sibling
and stop. Otherwise, apply the cleaning trans-
formation at q. If the new sibling of r is marked,
apply the sibling transformation at r and stop.
Otherwise, apply the cleaning transformation fol-
lowed by the parent transformation at r. If r is
still marked, q and r are marked siblings; apply
the sibling transformation at r. In total, at most
two element comparisons are necessary: one may
be done by the parent transformation and an-
other by the sibling transformation.

q is a right child (zig-zag case). Perform a
split at p, apply the parent transformation at r,
then join the resulting tree and that rooted at
q. Finally, attach the root of the result of the
join to the place where p was originally. Two
element comparisons are done: one by the join
and another by the parent transformation.

• Singleton transformation. If λ exceeds the
threshold and there are no runs, at least two
singletons must have the same rank and they
have marked parents only if they are right chil-
dren. A pair of such nodes is found with the help
of the singleton-pair list. Assume that q and s
are such singletons. If the parent of q is marked,
apply the parent transformation at q and stop.
Similarly, if the parent of s is marked, apply the
parent transformation at s and stop. If the sib-
ling of q is marked, apply the sibling transforma-
tion at q (or at its sibling depending on which
of the two is a left child) and stop. Similarly,
if the sibling of s is marked, apply the sibling
transformation at s (or at its sibling) and stop.
In accordance, if one or both of q and s are left
children, neither their parents nor their siblings
are marked. Apply the cleaning transformation
at q and s to ensure that both are right children
of their respective parents. Finally, apply the
pair transformation for q and s.

The find -min operation is implemented by exam-
ining all roots and marked nodes. The nodes of a run
can be traversed by starting from its leader and fol-
lowing left-child pointers until a non-marked node is
reached. Since the number of trees is at most blg nc+1
and the number of marked nodes is at most blg nc,
the worst-case time of find -min is O(lg n), involving
at most 2blg nc element comparisons.

An insert is performed by adding a single-node
tree, and appending a pointer to this node to the list
at the first entry of the root table. If this is the second
item in this entry, a pointer to this root-table entry is
appended to the root-pair list. The number of trees is
then reduced, if necessary, by removing a pair of trees
from an entry of the root-pair list, joining the two
trees, and adding the resulting tree to the structure.

It follows that the worst-case time of insert is O(1),
involving at most one element comparison.

In decrease, after making the element replacement,
the affected node is marked and an occurrence is in-
serted into the mark registry. A reduction of λ is
performed if possible. It follows that the worst-case
time of decrease is O(1), involving at most two elem-
ent comparisons.

The delete-min operation invokes find -min (at
most 2blg nc element comparisons) to locate a node x
with the minimum value. The distinguished ancestors
of x up to the root of the tree are identified, and each
of them is sifted down leaving the root of the tree of
x vacant. As a result, each node on the path from the
child of the deleted root to the leftmost leaf together
with its right subtree forms a perfect weak heap; the
heap and mark registries are updated accordingly. To
maintain the bound on τ , trees of equal rank are re-
peatedly joined until the threshold is reached (at most
blg nc element comparisons). To maintain the bound
on λ, a reduction of λ is performed if possible (at
most two element comparisons). Hence, the worst-
case time of delete-min is O(lg n), involving at most
3blg nc+ 2 element comparisons.

The performance of run-relaxed weak queues can
be summarized as follows.

Theorem 1 For run-relaxed weak queues, starting
with an empty structure, the execution of any se-
quence of n insert, m decrease, and n delete-min
operations requires at most 2m + 3nblg nc + n elem-
ent comparisons. The worst-case execution time of
this sequence is O(m+n lg n). Moreover, each insert
and decrease runs in O(1) worst-case time, and each
delete-min in O(lg n′) worst-case time, where n′ de-
notes the size of the heap prior to the operation.

Proof. The number of λ-reductions is bounded
by the total number of nodes that have ever been
marked, which is at most m. Each mark removal in-
volves at most two element comparisons. This ac-
counts for at most 2m element comparisons. The
number of τ -reductions is bounded by the total num-
ber of trees that have ever been created, which is one
per insert and at most blg nc per delete-min. This ac-
counts for at most nblg nc + n element comparisons.
The number of element comparisons involved in scan-
ning to locate the minima is at most 2nblg nc. The
theorem follows by combining these bounds. �

3.3 Rank-Relaxed Weak Queues

Here the basic idea is to reduce the number of mark-
ings as much as possible after every new marking.
Otherwise, the operations are executed as in run-
relaxed weak queues. To remove markings eagerly,
we enforce the following stronger invariants:

1. There exists at most one marked node per rank.

2. The parent of a marked node is non-marked.

3. A marked node is always a right child.

The last invariant forces us to make a modification to
the join operation: If a marked node is made a left
child, apply the cleaning transformation to it imme-
diately after a join. After this change, the operations
in the root registry do not break these invariants.

Assume that the invariants are valid, and consider
what to do when a node is marked. If the right child
of that node is marked, we apply the parent transfor-
mation at that child. Hereafter, we can be sure that
both children of the marked node are non-marked. To
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reestablish the invariants, we have to lift the marking
upwards until we reach the root, or until none of the
neighbouring nodes is marked and no other marked
node of the same rank exists.

Let q be the most-recently marked node, and let
parent(q) denote its parent. The propagation pro-
cedure has several cases; some of them can lift the
marking one or two levels up:

q is a root. Since a root cannot be marked, remove
this marking and stop.

q’s sibling is marked. Since the sibling is marked,
q must be a left child. Apply the sibling transforma-
tion at q, and repeat the case checks for the resulting
marked node at the level above.

q is a left child and all the neighbours of q are
non-marked. Apply the cleaning transformation at
q, and check for the next case.

q is a right child and parent(q) is non-marked.
If there is a marked node of the same rank as q, apply
the pair transformation for q and this marked node,
and repeat the case checks for the resulting marked
node; otherwise stop.

q is a left child and parent(q) is marked. Since the
parent is marked, it must be a right child. Remove
one marking from this length-two run as in the zig-
zag case of the run transformation, and repeat the
case checks for the resulting marked node.

q is a right child and parent(q) is marked. Apply
the parent transformation at q and stop.

For this structure, run and singleton transforma-
tions are not applied, and marking and unmark-
ing routines are easier. Our implementations of the
associated data structures—root registry and mark
registry—are simple and space-economical. A root
registry is a resizable array storing at each entry a
pointer to a root of that particular rank, if any. Addi-
tionally, two bit-vectors, each stored in a single word,
are maintained. These give the ranks where there ex-
ist roots and the ranks where there are two or more
roots, respectively. A mark registry is even simpler; it
is a resizable array storing at each entry a pointer to a
marked node of that particular rank, if any. Since we
only aim at achieving good amortized performance,
the standard doubling-and-halving technique can be
used to implement the resizable arrays; no worst-case
efficient resizable arrays are needed. A standard im-
plementation of a weak-queue node uses three point-
ers, and a word storing the rank, a bit indicating
whether the node is a root or not, and another bit
indicating whether the node is marked or not. Hence,
the amount of space used is 4n+O(lg n) words in ad-
dition to the elements stored. The amount of extra
words can be reduced to 3n + O(lg n) by storing the
parent-child relationships cyclically (Brown 1978).

The performance of rank-relaxed weak queues can
be summarized as follows.

Theorem 2 For rank-relaxed weak queues, starting
with an empty structure, the execution of any se-
quence of n insert, m decrease, and n delete-min
operations requires at most 2m + 3nblg nc element
comparisons. The worst-case execution time of this
sequence is O(m+ n lg n).

Proof. The proof is similar to the proof of Theorem
1, while noting the difference that λ ≤ blg nc − 1
holds; this follows as a result of the second invariant.
Hence, the number of element comparisons involved
in finding the minima is at most 2nblg nc − n. �

4 Relaxed Weak Heaps

Concerning the number of element comparisons per-
formed for our reference sequence, we can do even
better by relying on a single weak heap instead of a
collection of perfect weak heaps. A weak heap is a bi-
nary tree whose root only has a right child if any, and
whose elements obey the weak-heap ordering. Except
for the root, the nodes that have at most one child
are at the last two levels only.

In its original form (Dutton 1993, Edelkamp and
Wegener 2000), a weak heap is implemented using
an array of elements and an array of bits. In our
treatment, we implement weak heaps using a linked
representation. Also, we allow nodes that may violate
the weak-heap ordering as discussed in Section 3. As
for λ-reductions, we can either adopt the lazy strategy
(applying a reduction after each new marking), or
the eager strategy (removing the markings whenever
possible). We call the data structures using these
strategies a run-relaxed weak heap and a rank-relaxed
weak heap, respectively.

Here, there are two differences compared to our
previous treatment. First, every node stores its depth,
not its rank (the depth of the root being zero). Sec-
ond, we have to keep track of the leaves to make it
possible to expand and contract the heap at the last
level. We call this structure a leaf registry. In its
implementation, we maintain two doubly-linked lists,
one for each of the last two levels of the heap. All the
nodes of the last level are leaves and are accordingly
kept in the first list in arbitrary order. All the nodes
that have at most one child at the second-to-last level
are kept in the second list in arbitrary order. Using
these two lists, a leaf can be appended to or removed
from the last level of the weak heap in a straightfor-
ward manner. Naturally, a join is performed between
two subheaps of the same depth. This ensures that
the leaves are still at the last two levels, and the two
lists of the leaf registry need not be altered.

For a relaxed weak heap of size n, we can settle
λ ≤ dlg ne − 1. Recall that the height of the heap
is dlg ne + 1 and the root is never marked. When
λ = dlg ne, there are two marked nodes at the same
level and/or the child of the root is marked. For both
such cases, a λ-reduction is always possible.

Accompanying each λ-reduction, a constant num-
ber of nodes need to be swapped, and accordingly a
constant number of pointers are updated. It is sig-
nificant that subtrees are only swapped with other
subtrees having the same depth; this ensures that the
leaves stay at the last two levels, and the two lists of
the leaf registry need not be altered. However, when
a node is moved (by one of the transformations) from
the last level to the second-to-last level and vice versa,
the leaf registry must be updated accordingly.

An insert is performed by adding the new node,
say x, as a leaf at the last level. To do that, we first
pick a node, say y, from the list at the second-to-last
level (currently having at most one child). We add the
new node x as a child of y, and accordingly append x
to the list of nodes at the last level, and remove y from
the other list if it now has two children. The node x is
then marked indicating that it may be violating. The
insert operation is followed by reducing the number
of marked nodes as appropriate.

A decrease is executed, as in the relaxed weak
queues, by marking the affected node, and reducing
the number of marked nodes as appropriate.

Assume that we are deleting a node x. Let y be
the last node on the left spine (the path from the
root of a subtree to the leftmost leaf in that subtree)
of the subtree rooted at the right child of x. Node y
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can be identified by starting from the right child of
x, and repeatedly traversing left children until reach-
ing a node that has no left child. Furthermore, let z
be a node borrowed from the last level of the heap.
Naturally, the leaf registry must be updated accord-
ingly. Now, each node on the path from y to the right
child of x (both included) is seen as a root of a weak
heap. To create a subheap that can replace the sub-
heap rooted at x, we traverse the path upwards; we
start by joining y and z, then we continue by joining
the resulting subheap and the subheap rooted at the
parent of y, and so on. At last, x is removed and
the root of the result of the repeated joins is attached
in its place. Since this attached node may be violat-
ing, it is marked. Because of the possible increase of
λ and the reduction in the number of elements, the
operation is followed by λ-reductions as needed.

The correctness of this procedure follows from the
correctness of join; that is, the resulting subheap is
weak-heap ordered. It should be noted that it is fully
appropriate to use join here. By setting the depth
of z equal to that of y at the beginning, in any later
phase the depth of the root of the resulting subheap
is set to be one less than its earlier depth. The depths
of all other nodes remain unchanged.

For a delete-min operation, the minimum is either
at a marked node or at the root. After the minimum
node is localized, it is removed as described above.
Observe that, if the minimum is at a marked node, the
final marking will not increase λ, and if the minimum
is at the root, there is no need to mark the new root.

Since λ is bounded by dlg ne− 1, finding the mini-
mum requires at most dlg ne−1 element comparisons.
Each join requires O(1) time and involves one elem-
ent comparison. The number of nodes on the path
from y to the right child of x is at most dlg ne. Thus,
the number of joins, as well as the number of elem-
ent comparisons, performed to restore the weak-heap
ordering is at most dlg ne. A further optimization
can be done; we either borrow the node y, if it is a
leaf at the last level, or an arbitrary leaf z as before.
By starting the repeated joins from the second-to-last
level, the number of joins will be at most dlg ne−1. It
follows that, in total, the number of element compari-
sons performed by delete-min is at most 2dlg ne − 2
plus those performed when removing marked nodes.

The performance of run-relaxed weak heaps can
be summarized as follows.

Theorem 3 For run-relaxed weak heaps, decrease
and insert require O(1) worst-case time using at
most two element comparisons per operation, and
delete-min requires O(lg n) worst-case time using at
most 2dlg ne element comparisons.

For rank-relaxed weak heaps, the bounds on the
number of element comparisons can be further re-
duced with the following improvement in delete-min.

• If λ < 1
2dlg ne, perform delete-min as above.

• If λ ≥ 1
2dlg ne, use the transformations to remove

all the existing markings. This is done bottom
up; starting with the mark at the lowest level,
we repeatedly lift it up using the parent trans-
formation until this mark meets the first mark at
a higher level. We then apply either the sibling or
the pair transformation to remove the two mark-
ings and introduce one mark at the next higher
level. These actions are repeated until all the
markings are removed. We then proceed with
the delete-min operation as above, while noting
that a minimum element is now at the root.

Theorem 4 For rank-relaxed weak heaps, starting
with an empty structure, the execution of any se-
quence of n insert, m decrease, and n delete-min
operations requires O(m+ n lg n) time using at most
2m+ 1.5n lg n element comparisons.

Proof The total number of markings created by m
decrease and n insert operations is m+n (one mark-
ing per operation); no other operation will increase
this number. Since every λ-reduction gets rid of at
least one marking, the total number of reductions is
at most m + n. Since each λ-reduction performs at
most two element comparisons, the total number of
element comparisons involved is at most 2m+ 2n.

Consider the delete-min operation. The number of
involved joins, and accordingly the number of elem-
ent comparisons, performed to restore the weak-heap
ordering is at most dlg ne−1. For the first case, when
λ < 1

2dlg ne, the number of element comparisons in-

volved in find -min is less than 1
2dlg ne. Then, the

number of element comparisons charged for such case
is at most 1.5dlg ne − 1. For the second case, when
λ ≥ 1

2dlg ne, the number of levels that have no mark-

ings is at most 1
2dlg ne. Our bottom-up procedure ex-

ecutes at most one parent transformation for each of
these levels to lift a making one level up. Since a par-
ent transformation performs one element comparison,
the total number of element comparisons involved in
such transformations (which do not reduce the num-
ber of marked nodes) is at most 1

2dlg ne. After the
mark removals, as the root now has the minimum
value, there are no element comparisons involved in
find -min. Then, the number of element comparisons
charged for such case is also at most 1.5dlg ne − 1.

When considering the n delete-min operations,
the ceiling in the bound can be dropped by pay-
ing attention to the shrinking number of elements
in the repeated delete-min operations. For these,
the worst-case scenario occurs with weak heaps of
size n, n− 1, . . . , 1; in this scenario n insert opera-
tions are followed by n delete-min operations (Dutton
1993). Hence, the total number of element compari-
sons charged for the delete-min operations is at most
1.5(

∑n
i=1dlg ie) − n < 1.5n lg n − 2n. Here we use

the inequality
∑n

i=1dlg ie ≤ n lg n−0.914n (Edelkamp
and Stiegeler 2002). Together with the 2m+2n elem-
ent comparisons required by the λ-reductions, we per-
form a total of at most 2m + 1.5n lg n element com-
parisons for the whole sequence of operations. �

5 Experiments

To verify the practical relevance of our theoreti-
cal findings, we implemented seven data structures:
weak heap, weak queue, run-relaxed weak heap, run-
relaxed weak queue, rank-relaxed weak heap, rank-
relaxed weak queue, and violation heap. All our
implementations have been made part of the CPH
STL (www.cphstl.dk). For comparison purposes,
we also considered two implementations from LEDA
(Mehlhorn and Näher 1999): Fibonacci heap and
pairing heap; and four other from the CPH STL:
array-based binary heap, array-based weak heap, Fi-
bonacci heap, and pairing heap. In this section, we
report the results of the experiments carried out for
these data structures. We performed two types of
experiments. First, we looked at operation sequences
encountered when computing shortest paths. Second,
we looked at syntactic operation sequences.
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The priority queues available at the CPH STL, old
and new, support the interface of a meldable priority
queue. To avoid redundant code, the design is based
on the bridge design pattern: The interface provided
for the users has many convenience functions, whereas
the realizators—the data structures—just provide the
key functionality. In their basic form, for all realiza-
tors, the evaluation of find -min can take logarithmic
worst-case time. However, if necessary, the realizators
can be decorated to support find -min in O(1) worst-
case time. In the experiments reported here, slow
find -min was used; so, in delete-min it was necessary
to find the minimum before it could be extracted.

The library interface of a meldable priority queue
is parameterized with: the type of elements, a com-
parison function, an allocator (with the standard al-
locator as default), a realizator, and iterators used
to access the elements stored by the realizator. In
addition, realizators accept more specialized type pa-
rameters like: the type of the root registry, the mark
registry, and some other policies. The type parame-
ters enable the compiler to inline code and facilitate
policy-based benchmarking (Bruun et al. 2010).

Here is another note about our competitors:

Array-based binary heap (Williams 1964). The
CPH STL implementation employs a bottom-up
heapifier, and stores elements indirectly using han-
dles to retain referential integrity. That is, each array
entry stores a pointer to an element and from that
element there is a reference back to the entry.

Array-based weak heap (Dutton 1993). As above,
elements are stored indirectly. This implementation
was one of the fastest implementations considered
in (Bruun et al. 2010).

Fibonacci heap (Fredman and Tarjan 1987). The
CPH STL implementation is lazy: insert , decrease,
and delete operations only add nodes to the root list
and leave all the work for the forthcoming find -min
operations, which consolidate roots of the same rank.

Pairing heap (Fredman et al. 1986). The CPH
STL implementation is a reconstruction of the no-
auxiliary-buffer two-pass approach used in LEDA.

2-3 heap (Takaoka 2003). Compared to the original
proposal, the CPH STL implementation includes a
few modifications to support the CPH STL interface.

Violation heap (Elmasry 2010). We used a root
registry that relies on a singly-linked list. To sup-
port three-way join operations, we used a bit-vector
to indicate the ranks that have more than two roots.

When developing the programs for the experi-
ments, we used the code written for the experiments
reported in (Bruun et al. 2010) as the starting point.
Our goal was to simplify the code base in order to
make maintenance simpler. Therefore, we made a
complete rewrite of the code base. In particular,
we aimed that the data structures use the same set
of transformations. We built two component frame-
works, one to realize all weak-queue variants and an-
other to realize all weak-heap variants. The frame-
works can be characterized as follows:

Weak-queue framework. The root registry uses
the numeral-system approach described, for exam-
ple, in (Elmasry et al. 2008a). Its advantage is that
no collision lists are necessary because at each rank
there are at most two roots. Three mark registries
were written: the naive registry that avoids markings
by repeatedly visiting distinguished ancestors (weak
queue), the lazy registry described in Section 3.2 (run-
relaxed weak queue), and the eager registry described
in Section 3.3 (rank-relaxed weak queue).

Table 1: Approximative LOC counts for various
priority-queue realizators in the CPH STL. (Com-
ments, assertions, debugging aids, and lines with a
single parenthesis are ignored, and long statements
are counted as single lines.)

Realizator LOC
weak heap 565
weak queue 513

run-relaxed weak heap 1 021
run-relaxed weak queue 964
rank-relaxed weak heap 883
rank-relaxed weak queue 826
array-based binary heap 205
array-based weak heap 214

Fibonacci heap 296
pairing heap 204

2-3 heap 546
violation heap 459

Weak-heap framework. The leaf registry was im-
plemented as described in Section 4. The mark regis-
tries were reused: the naive registry (weak heap), the
lazy registry (run-relaxed weak heap), and the eager
registry (rank-relaxed weak heap).

The nodes used by all priority queues reserved
space for three pointers pointing to the parent, left
child, and right child, respectively. Depending on
the priority queue in use, additional information (like
rank and depth) was associated with each node. To
speed up the grouping of nodes at the same level,
we associated a static array of size 64 (we assumed
n < 264) for the advanced mark-registry implementa-
tions. To find the first occupied entry in this array,
we maintained an additional bit-array in a single word
and exploited the computation of the most significant
1-bit (via the built-in leading-zero-count command).

All experiments were performed on one core of
a desktop computer (model Intel i/7 CPU 2.67
GHz) running Ubuntu 10.10 (Linux kernel 2.6.28-11-
generic). This computer had 32 KB L1 cache, 256 KB
L2 cache, 8 MB (shared) L3 cache, and 12 GB main
memory. All programs, written in C++, were compiled
using GNU C++ compiler (gcc version 4.3.3) with op-
tions -Wall -O3 -fno-strict-aliasing -lleda.

The length of a program says something about
its complexity, even though this metric does not ex-
actly capture the intellectual challenge of creating the
programming artifact in hand. To give a big pic-
ture of the code complexity of the different priority-
queue implementations, we list the LOC counts for
many of the data structures available in the CPH STL
in Table 1. For most priority queues four pieces—
node, root registry, mark registry, and priority-queue
engine—are clearly visible in the code. We report the
total amount of code needed for implementing these
central pieces in each data structure. There are pieces
that are shared by the components (like the transfor-
mations), but their LOC counts are included in the
total amounts for all data structures that use them.

5.1 Shortest-Paths Computation

We measured the number of distance comparisons
performed and the CPU time consumed for the
single-source shortest-paths computation. We chose
Dijkstra’s algorithm as a good fit for our setting since,
for a graph of n vertices and m edges, at most n
insert and delete-min operations and m decrease op-
erations are executed. For generating random graphs
of n vertices and m edges, we used the graph gener-

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

109



Table 2: Effect of the graph representation on the
running time of Dijkstra’s algorithm when n = 2k and
m = 2n lg n (PH: pairing heap, FH: Fibonacci heap,
r: LEDA random graph c: LEDA compact graph, e:
engineered graph); each test result (time/(n lg n+m)
[ns]) is the average of 10 repetitions.

k PHr PHc PHe FHr FHc FHe

13 42.4 47.7 15.9 47.7 53.0 26.5
14 41.4 43.5 17.4 52.3 52.3 30.5
15 54.7 54.7 19.9 64.1 65.2 29.4
16 70.6 71.7 23.9 83.9 83.9 33.5
17 81.2 81.9 27.1 93.7 94.2 36.3
18 96.0 96.4 35.4 109.7 110.4 46.1
19 108.2 108.8 43.8 124.0 124.4 55.6
20 111.5 111.8 47.6 126.8 127.3 60.1

ators from LEDA (version 6.2). Edge weights were
integers drawn randomly from the range [1..m] and
converted to double-precision floating-point numbers.

We modified LEDA’s code for Dijkstra’s algorithm
as follows: 1) We computed the shortest-path dis-
tances from the source to all other vertices, not the
shortest paths themselves. 2) We maintained the
state of each vertex; a vertex could be scanned, la-
belled, or unlabelled. 3) We ignored all back edges,
i.e. edges to a scanned vertex, from further consider-
ation when updating the tentative distances. 4) We
inserted a vertex into the priority queue when its state
changed from unlabelled to labelled.

In our experiments, violation heaps and 2-3 trees
showed good performance. However, these structures
were beaten by other competitors for both the run-
ning time and the number of distance comparisons.
The priority queues from LEDA turned out to be
slower than their CPH-STL counterparts, and hence
they were excluded from further consideration. Also,
the array-based weak-heap implementation was out-
performed by a small margin by the new pointer-
based weak-heap implementation and was accordingly
excluded from further consideration. The explanation
is that, for referential integrity, the array-based imple-
mentations have to use indirection and rely on point-
ers, too. We also excluded run-relaxed weak heaps
and run-relaxed weak queues as they provide worst-
case guarantees which was not relevant for the present
application. Moreover, the rank-relaxed variants were
always better and are a good replacement.

As a standard, a graph is represented using adja-
cency lists. However, as pointed out by the develop-
ers of LEDA (Mehlhorn and Näher 1999) and others,
this may lead to a poor cache behaviour. Therefore,
LEDA offers a more compact graph representation
based on adjacency arrays. To make further appli-
cation engineering possible, we implemented our own
graph data structure based on adjacency arrays. In
our engineered version, each edge stores its endpoints
and its length. This information is kept compactly
in an array while storing all edges outgoing from
the same vertex consecutively in memory. Moreover,
the graph and the priority queue use the same set
of nodes. Each vertex stores its tentative distance,
its state, and a pointer to the first of its outgoing
edges. For example, in the case when the under-
lying priority queue is a Fibonacci heap, each node
also stores a degree, a mark, and four pointers to
two siblings, the parent, and a child. If the edge
lengths are double-precision floating-point numbers
taking two words each, and if each pointer takes one
word, for a graph of n vertices and m edges, the data
structures would require 4m+ 8n+O(1) words.

Table 2 shows that, when this engineered graph
representation was used with Fibonacci or pairing
heaps in the implementation of Dijkstra’s algorithm,
the resulting implementation was about a factor of 2-3
faster compared to that relying on the graph struc-
tures of LEDA. The main problem was the inter-
connection between the two data structures. Some-
how it was necessary to recall for each vertex its lo-
cation inside the priority queue and to indicate for
each priority element the corresponding vertex in the
graph; this required space and indirect memory ac-
cesses. Also, because of the tight coupling of the two
structures, we could avoid all dynamic memory man-
agement. The memory for the graph was allocated
from the stack, and the priority queues could reuse
the same nodes. Because of these advantages, we used
this graph representation in further experiments.

The results of the experiments on Dijkstra’s al-
gorithm are given in Figures 2–4. We varied the
edge density of the input graphs from m = 4n, to
m = 2n lg n, up to m = n3/2.

For all graphs, the number of distance comparisons
was smallest for weak heaps. In general, the weak-
queue variants performed more distance comparisons
than the weak-heap variants, while the rank-relaxed
versions performed better than the run-relaxed ones.
As to the CPU time, binary heaps are mostly the win-
ners followed by pairing heaps, while there is a visible
advantage of weak queues compared to weak heaps.
For both performance measures, relaxed variants are
often worse than their non-relaxed counterparts.

The case of dense graphs seems intriguing. As m
is much larger than n, the manipulation of the graph
is the dominating factor. The results for the number
of distance comparisons indicate that this value con-
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Figure 2: Performance of Dijkstra’s algorithm on
graphs with m = 4n for different priority queues.
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Figure 3: Performance of Dijkstra’s algorithm on
graphs with m = 2n lg n for different priority queues.
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Figure 4: Performance of Dijkstra’s algorithm on
graphs with m = n1.5 for different priority queues.

Table 3: Performance of different priority queues in
our syntactic tests.

#Comparisons Time [ns]
insert/ n 106 107 106 107

array-based binary heap 17.95 21.32 163 188
weak heap 10.06 11.87 273 332
weak queue 0.99 0.99 86 79
run-relaxed weak heap 1.84 1.84 320 328
run-relaxed weak queue 0.99 0.99 76 78
rank-relaxed weak heap 1.47 1.49 166 173
rank-relaxed weak queue 0.99 0.99 76 75
decrease/ n 106 107 106 107

array-based binary heap 18.95 22.32 831 1 832
weak heap 10.90 12.85 1 006 1 686
weak queue 9.85 11.34 1 836 3 482
run-relaxed weak heap 1.99 1.99 570 606
run-relaxed weak queue 1.99 1.99 413 526
rank-relaxed weak heap 1.99 1.99 413 527
rank-relaxed weak queue 1.99 1.99 280 381
delete-min / n lgn 106 107 106 107

array-based binary heap 0.98 0.95 46 80
weak heap 0.94 0.92 57 80
weak queue 1.31 1.34 53 76
run-relaxed weak heap 1.09 1.19 54 76
run-relaxed weak queue 1.31 1.34 52 73
rank-relaxed weak heap 0.94 1.30 61 88
rank-relaxed weak queue 1.31 1.34 53 74

verges to about 1/2 distance comparison per edge; see
Figure 4. This is justified as performing (on average)
one distance comparison per forward edge, and none
for back edges. In other words, distance comparisons
are done to check whether to execute a decrease or
not; after this check, very few distance comparisons
are performed by the decrease operations.

5.2 Syntactic Operation Sequences

If the edge weights are uniformly-distributed random
numbers, the expected number of decrease opera-
tions executed in Dijkstra’s algorithm isO(n lg(m/n))
(Noshita 1985). In addition, for this type of input, the
cost per decrease is small for non-relaxed structures
like binary and weak heaps. In accordance, we con-
ducted additional experiments to measure the worst-
case performance of individual operations.

insert test. Start with an empty data structure, per-
form n insert operations. The elements were given in
decreasing order.

decrease test. After n insert operations, perform n
decrease operations. The elements were inserted in
random order. The value of each element was de-
creased once to a value smaller than the active mini-
mum, and decrease operations were performed in de-
creasing order according to the element values.

delete-min test. After n insert operations, perform
n delete-min operations. The elements were inserted
in random order.

In the last two tests, the cost of building the struc-
tures was not included in the test results. Table 3
provides the number of element comparisons and the
observed CPU times when n = 106 and 107.

Consider the number of element comparisons per-
formed. Except for weak heaps and binary heaps,
other structures performed well for insert . All the
non-relaxed structures showed logarithmic behaviour
for decrease. For both tests, all relaxed structures
performed at most two element comparisons per oper-
ation. For delete-min, the performance of weak heaps
was the best and close to the optimum.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

111



Consider the CPU time consumed. The weak-
queue variants are superior to the weak-heap vari-
ants for insert . For decrease, though the relaxed
structures are superior to the non-relaxed ones, the
overhead due to the λ-reduction transformations is
still visible. On the other hand, the performance of
delete-min is quite similar for all structures.

6 Conclusion

We were mainly interested in the comparison com-
plexity of priority-queue operations when handling an
operation sequence that appears in typical applica-
tions. Introducing relaxed weak heaps, we showed
how to perform a sequence of n insert , m decrease,
and n delete-min operations using at most 2m +
1.5n lg n element comparisons. For all other known
data structures, the proved bounds are higher. In par-
ticular, Fibonacci heaps are not optimal with respect
to the number of element comparisons performed.

Our experiments indicated that this improvement
is primarily analytical. In the test scenarios consid-
ered by us, for many priority queues, the number
of element comparisons performed was observed to
match, or to be better than, the number achieved by
relaxed weak heaps. We once more note that there is
a gap between the theoretical worst-case bounds and
the actual performance encountered in practice. One
could ask whether the worst-case analysis of some of
the other structures could be improved as well.

Although it is possible to achieve n lg n +
2n lg lgn+O(m+n) element comparisons for the op-
eration sequence considered (Elmasry et al. 2008b),
the constant in the O(·) term for m and n is big-
ger than 2 (about 5). A theoretical question arises
whether it is possible or not to achieve a bound of
2m + n lg n + o(n lg n) element comparisons for our
reference sequence of operations.
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