
Reverse Engineering of XML Schemas to Conceptual Diagrams

Martin Nečaský

Department of Software Engineering
Charles University, Prague, Czech Republic
Email: necasky@ksi.mff.cuni.cz

Abstract

It is frequent in practice that different logical XML
schemas representing the same reality from different
viewpoints exist. There is also usually a conceptual di-
agram modeling the reality independently of the view-
points. It is important to keep the XML schemas and
conceptual diagram consistent as they are both utilized
for different purposes. In practice, this is however rarely
the case. In this paper, we propose a reverse engineering
method as a solution to this problem. We provide a semi–
automatic algorithm that produces mappings of compo-
nents of the XML schemas to components of the concep-
tual diagram. The method only provides suggestions for
the mapping and manual participation of a domain expert
is therefore required.

Keywords: xml schema, conceptual model, reverse engi-
neering.

1 Introduction

Without any doubt, XML is currently a de-facto standard
for data representation. Its popularity is given by the fact
that it is well-defined, easy-to-use and, at the same time,
enough powerful. With a growing popularity of XML,
there is also a growing need for effective methods and
tools for designing XML data. In recent research, there
has appeared several approaches that concentrate on so
called forward engineering methods. These approaches
usually apply the ER model (such as (Dobbie et al. 2000),
(Mani 2004)) or UML class model (such as (Routledge
et al. 2002) or (Bernauer et al. 2003)). They suppose de-
signing a conceptual diagram of the problem domain first.
After that, a representation in an XML schema language is
derived automatically from the conceptual diagram. Usu-
ally, the applied XML schema language is XML Schema
(Thompson et al. 2004). There exist recent surveys of
this area, e.g. (Nečaský 2008, Domı́nguez et al. 2007,
Bernauer et al. 2004).

However, these approaches have not considered a cru-
cial fact that information systems usually do not apply
only one XML format but several (e.g. for sending pur-
chase orders, browsing product catalogs, viewing sales re-
ports, etc). These XML formats represent different views

This paper was supported by the Grant Agency of Czech Republic
(project 201/09/0990) and by the Ministry of Education of the Czech
Republic (grant MSM0021620838).

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the Sixth Asia-Pacific Conference on Conceptual Modelling
(APCCM 2009), Wellington, New Zealand, January 2009. Conferences
in Research and Practice in Information Technology (CRPIT), Vol. 96,
Markus Kirchberg and Sebastian Link, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

<order-request <distribution
issue-date="20/06/2008"> product-code="P475">
<ship-addr> <rgn name="CZ">
<street>X</street> <purchase no="3820192"
<postcode>X</postcode> amount="5"/>
<city>X</city> <purchase no="3820199"
</ship-addr> amount="2"/>
<bill-addr> </rgn>
<street>Y</street> <rgn name="SK">
<postcode>Y</postcode> <purchase no="3820298"
<city>Y</city> amount="4"/>
</bill-addr> </rgn>
<messenger mno="M45"/> </distribution>
<ol product-code="P475">
<price>458</price>
<quantity>3</quantity>

</order-request>

Figure 1: Purchase Request and Product Distribution
XML Documents

on the data in a system. It is natural since there are dif-
ferent groups of users who view the data (e.g. about
customers, products or purchases) from different perspec-
tives. Therefore, one concept can be represented in vari-
ous XML formats in different ways.

Example 1 demonstrates the situation. There are two
XML documents. The XML document on the left demon-
strates an XML format for purchase requests. The other
represents an XML format for product sales reports. Both
formats represent products, customers and purchases but
in different XML structures, i.e. with different XML ele-
ments and attributes.

Current approaches are not sufficient for designing
such XML formats since they automatically translate a
conceptual diagram into an XML schema. Therefore, this
leads to augmenting a conceptual diagram for the needs of
the corresponding XML format. It means enriching the di-
agram with syntactical constructs that model hierarchical
structure (since XML is hierarchical in its nature), decid-
ing whether a given part of the data should be represented
as an XML element or attribute, etc. In the result, there
is a separate conceptual diagram for each XML format.
However, a conceptual diagram should be abstracted from
the details of a concrete logical model (e.g. XML) and
from a particular user view (e.g. XML format).

In our previous work (Nečaský 2007, 2008), we have
developed a conceptual model for XML that overcomes
the disadvantages of the existing approaches. We present
the model briefly later in this paper. We can anticipate the
main idea standing behind the model. It is a division of the
conceptual modeling process to two steps. In the first step,
a conceptual diagram describing a problem domain inde-
pendently of its representation in various XML formats is
designed. In the second step, required XML formats are
designed on the base of the conceptual diagram.

In this paper, we further extend our conceptual model
with so called reverse engineering capabilities. We are
motivated by a common situation in current information
systems. As we have already discussed, there are usually

several XML formats each described by an XML schema.
Usually, there also exists a UML class diagram or ER
diagram, that describes the data at the conceptual level.
This conceptual diagram is usually developed at the be-
ginning of the development process but never used later.
Consequently, the XML schemas are designed separately
from the conceptual diagram and are therefore not explic-
itly mapped to the conceptual diagram. A common con-
sequence is that the XML schemas are inconsistent with
the conceptual diagram as well as with each other. This
makes not only their design but also their maintenance
harder (e.g. their evolution, change impact analysis, etc.).
Suppose for example that we need to make a change in an
XML schema, e.g. to remove an XML element declara-
tion. This change can cause additional changes in other
XML schemas as well to keep them consistent with each
other. Today, it is necessary to make these additional
changes manually which is time–consuming and error–
prone. If we had a conceptual diagram and each XML
schema was mapped to the conceptual diagram, we could
propagate the change to the conceptual diagram first and
from here to the other XML schemas automatically. This
would automate the evolution process significantly.

Reverse engineering of XML schemas, as we under-
stand it in this paper, means to map existing XML schemas
to an existing conceptual diagram. Because manual re-
verse engineering would be time–consuming and error–
prone activity, we try to find a semi–automatic method,
i.e. a method that is still performed by a domain expert
but supported by a computer.

Related Work. There exist several approaches to re-
verse engineering of XML schemas to UML class di-
agrams such as (Jensen et al. 2003)(Yang et al. 2006).
There is also a recent survey in (Yu & Steele 2005). Their
common characteristics is that they automatically translate
an XML schema to a corresponding UML class diagram.
However, the following facts, that we consider crucial for
a reverse–engineering method to be successfully applica-
ble in practice, have not been addressed yet:

1. UML class diagram modeling data at the conceptual
level usually exists. Often, it is created during initial
phases of the development process and rarely used
later during system maintenance.

2. Several XML schemas describing different XML for-
mats applied in the system exist. These formats re-
flect different perspectives of particular users. How-
ever, the XML schemas are mostly designed sepa-
rately from the UML class diagram.

If we apply existing approaches on a set of XML
schemas, we get a set of separate UML class diagrams
each being the result of an automated reverse engineer-
ing of the respective XML schema. These UML class
diagrams are not interrelated neither with each other nor
with the existing UML class diagram. Therefore, we can
not utilize the reverse engineered UML class diagrams for,
e.g. XML schema maintenance mentioned earlier.

Contribution In this paper we try to overcome the de-
scribed disadvantages of existing approaches to reverse
engineering of XML schemas. For this purpose, we apply
the Model-Driven Architecture (MDA) (Miller & Mukerji
2003) which considers two types of models. Platform–
Independent Model (PIM) enables one to model data in-
dependently of any representation in any concrete data
model. Platform–Specific Model (PSM) allows one to
model representation of data modeled by the PIM diagram
using constructs of a selected data model such as XML.

In our approach, a PIM diagram is a UML class dia-
gram that models data independently of its representation
in XML, i.e. it is a conceptual diagram of the data. A PSM
diagram is also a UML class diagram but models how the
data is represented in a particular XML format. It mod-
els an XML schema of this XML format at the conceptual
level. At this point, it is important to stress explicitly that

an XML schema and its PSM diagram represent a partic-
ular view on the system while the system is described in-
dependently of this view by the PIM diagram. The XML
schema represents the view at the logical level, without
any connection to the PIM diagram, while the PSM dia-
gram represents the view at the conceptual level, with an
explicit mapping to the PIM diagram.

In this paper, we consider an existing PIM diagram
and a set of XML schemas. We suppose that the XML
schemas were designed manually without any explicit re-
lationship to the PIM diagram. The XML schemas could
also be imported to the system, e.g. because of needs of
communication with other systems. This is a common sit-
uation in practice. Instead of automatic translation of each
XML schema to a separate UML class diagram, we pro-
pose a semi–automatic method that maps components of
the XML schemas to components of the PIM diagram. For
each XML schema, the method constructs a PSM diagram
that models the XML schema at the conceptual level and
describes the semantics of its components in terms of the
PIM diagram. The result is that the XML schemas are
mapped to the PIM diagram. In other words, the PIM dia-
gram integrates the XML schemas at the conceptual level.
This facilitates maintenance of the XML schemas as well
as other related tasks (e.g. their integration, data storage,
etc.). For example, if a new user requirement appears, cor-
responding changes are made in the PIM diagram and are
automatically propagated through the reverse engineered
PSM diagrams to the XML schemas. A change can also
be done in an XML schema or its PSM diagram and au-
tomatically propagated through the PIM diagram to the
other XML schemas.

Reverse engineering of XML schemas with an ex-
ploitation of an existing PIM diagram has not been stud-
ied yet to our best knowledge. This brings a new chal-
lenge of exploitation of semi-automatic schema mapping
techniques ((Shvaiko & Euzenat 2005) (Chiticariu et al.
2007)) in reverse engineering techniques.

2 XML Schema

In this section we briefly describe the XML Schema lan-
guage (Thompson et al. 2004) as it is an essential tech-
nology for this paper. It describes syntactical structure
of XML documents, i.e. what XML elements and at-
tributes can be used. XML Schema is an XML dialect, i.e.
schemas are XML documents. An example XML schema
is depicted in Figure 2. Since XML Schema provides a
lot of constructs, we consider only basic ones to keep the
complexity of the paper acceptable.

The basic construct is element declaration. It is speci-
fied by an element element and declares elements with
a given name. An element declaration has a simple or
complex type. A simple type specifies that the declared
elements contain text values. A complex type specifies
that the elements have attributes and contain child ele-
ments. E.g., there is an element declaration with a name
order-request at line 02 in Figure 2. It has assigned
a complex type OrderRequest and declares elements
order-request with attributes and child elements de-
fined by the complex type. An element declaration with
a name street has assigned a simple type string. It
declares elements street containing a string value.

Attribute declaration is specified by an element
attribute and is used to declare attributes. It has a
name and a simple type specifying values of the declared
attributes. E.g., there is an attribute declaration with a
name issue-date at line 13.

Each simple or complex type is described by an XML
Schema construct called type definition. It is specified
by an element simpleType or complexType, respec-
tively. A type definition has a name that identifies the type

01 <schema xmlns="http://www.w3.org/2001/XMLSchema">
02 <element name="order-request" type="OrderRequest"/>
03 <complexType name="OrderRequest">
04 <sequence>
05 <element name="ship-addr" minOccurs="0"

type="Address"/>
06 <element name="bill-addr" minOccurs="0"

type="Address"/>
07 <choice>
08 <element name="messenger" type="Messenger"/>
09 <element name="van" type="Van"/>
10 </choice>
11 <element name="ol" type="OL"

maxOccurs="unbounded"/>
12 </sequence>
13 <attribute name="issue-date" type="date"/>
14 </complexType>
15 <complexType name="Address">
16 <sequence>
17 <element name="street" type="string"/>
18 <element name="postcode" type="string"/>
19 <element name="city" type="string"/>
20 </sequence></complexType>
21 <complexType name="Messenger">
22 <attribute name="mno" type="string"/></complexType>
23 <complexType name="Van">
24 <attribute name="vno" type="string"/></complexType>
25 <complexType name="OL">
26 <sequence>
27 <element name="price" type="decimal"/>
28 <element name="quantity" type="integer"/>
29 </sequence>
30 <attribute name="product-code" type="string"/>
31 </complexType></schema>

Figure 2: XML Schema

in the XML schema1. In this paper we are interested only
in complex types. E.g., there is a complex type definition
OrderRequest at line 03. A complex type definition
contains so called content model which defines child el-
ements. It further contains a set of attribute declarations
that define attributes. Even though XML Schema pro-
vides several constructs for defining content models, we
consider only a construct sequence. It contains a list of
element declarations and models an ordered sequence of
child elements. It can also contain choice constructs. A
choice contains one or more element declarations and
models that only one of them can appear among child ele-
ments in a parent element.

3 Conceptual Model

In this section, we briefly introduce our MDA–based
conceptual model for XML. For its full description see
(Nečaský 2008).

3.1 Platform–Independent Model

As a platform–independent model (PIM), we use UML
class diagrams. Even though UML provides more con-
structs, we consider only classes with attributes and binary
associations. As we mentioned in the introduction, a PIM
diagram describes the problem domain independently of
a representation of the domain in a concrete data model
such as relational or XML.

Example 1 Figure 3 shows a PIM diagram of a com-
pany. A class Purchase models purchases. It has attributes
purchase-no and date modeling relevant purchase charac-
teristics. An association connecting Purchase and Item
models that purchases contain items. Associations can
have labels that explicitly specify the semantics for the
reader. For example, Purchase and Address are associated
by two associations with labels ship and bill, respectively.

1There can also be anonymous definitions but we omit them in this paper

Figure 3: PIM diagram

Figure 4: Purchase PSM diagram

3.2 Platform–Specific Model

As a platform–specific model (PSM), we use UML class
diagrams extended with some constructs for modeling
XML specific details. A PSM diagram models a given
XML format. There can be more PSM diagrams derived
from a PIM diagram each modeling a separate XML for-
mat. The PSM diagram describes not only the structure
of the format but also its semantics in terms of the PIM
diagram since it uses its classes and associations.
Example 2 Figure 4 depicts a PSM diagram derived from
the PIM diagram depicted in Figure 3. It models the XML
format for purchase requests demonstrated by the XML
document depicted in Figure 1 on the left.

A PSM diagram is a tree. It can be translated to a rep-
resentation in an XML schema language (see (Nečaský
2008)). Basic PSM building blocks are UML classes and
directed binary UML associations.

A PSM class Cpsm represents a PIM class C and spec-
ifies how instances of C are represented in the modeled
XML format. Cpsm has the same name as C and zero or
more attributes of C. For an attribute Attr, an expression
Attr AS a specifies that Attr is assigned with an alias a.
We use an alias if we want an attribute to be represented
in the XML format with a name different from its origi-
nal name. Cpsm further contains an ordered list of zero
or more PSM associations going from Cpsm. This list is
called content of Cpsm.

A PSM association Apsm goes from a parent class to
a child class. It represents a construction called nesting
join that describes the semantics of Apsm in terms of com-
ponents of the PIM diagram. We introduce nesting joins
later in this section. Here, we anticipate that a nesting join
specifies nesting of instances of PIM classes represented
by the PSM classes connected by Apsm.

A PSM class Cpsm, that represents a PIM class C,
models that an instance of C is represented in XML docu-
ments as a set of XML attributes and sequence of XML el-
ements. The XML attributes are modeled by the attributes
of Cpsm. An attribute Attr models an XML attribute with
a name given by an alias of Attr or name of Attr (if Attr

does not have an alias). The XML elements are modeled
by the content of Cpsm. Let Apsm be a PSM association
in the content going to a PSM class C ′psm that represents
a PIM class C ′. Apsm models that the XML code repre-
senting an instance c′ of C ′ is contained in the XML code
representing an instance c of C if c′ is nested in c by Apsm.

Cpsm can have assigned a label called element label.
It is displayed above Cpsm. If Cpsm has an element label
l, the XML elements and attributes modeled by Cpsm are
enclosed in an XML element named l. Otherwise, they are
propagated to the closest ancestor with an element label.
An existence of such an ancestor is ensured since each root
PSM class must have an element label.

PSM further contains constructs for modeling XML
syntactic details. An attribute container can be contained
in the content of a PSM class Cpsm and contains one or
more attributes of Cpsm. It models that the attributes are
represented as XML elements not attributes. A content
choice can also be contained in the content of a PSM class
Cpsm and models variants in the content of Cpsm. It con-
tains two or more PSM associations going from Cpsm and
specifies that only one of them can be instantiated for each
instance of Cpsm. A structural representative Rpsm is a
PSM class that inherits attributes and content of another
PSM class Cpsm. Both Rpsm and Cpsm must represent
the same PIM class. Rpsm can have its own element label.

Example 3 Assume again the PSM diagram depicted in
Figure 4. Its root Purchasepsm represents Purchase. It
has an element label order-request. Further, it has an at-
tribute date with an alias issue-date. The other attribute
purchase-no of Purchase is not represented. The con-
tent of Purchasepsm contains a PSM association going
to a PSM class Addresspsm and PSM association going
to a structural representative of Addresspsm. A structural
representative is displayed as a class but with a dashed
line. The associations are followed by a content choice. It
is displayed by a circle with an inner ’|’ and contains two
PSM associations going to Messengerpsm and V anpsm.
It specifies that each purchase has only a messenger or
van but not both. Finally, there is a PSM association
going to Itempsm. It nests items in corresponding pur-
chases. The diagram also contains attribute containers.
E.g., Addresspsm has its attributes street, postcode and
city separated to an attribute container.

An XML document depicted in Figure 1 on the left is an
XML representation of a purchase as modeled by the PSM
diagram in Figure 4. Because the root Purchasepsm
has the element label order-request, the XML represen-
tation of the purchase is enclosed in an XML element
order-request. Its attribute date with the alias issue-
date specifies that a purchase date is represented as an
XML attribute issue-date of order-request.

The PSM association going to Addresspsm with the
element label ship-addr specifies that a ship address is
nested in the purchase. The XML representation of the
ship address is modeled by Addresspsm. It is enclosed
in an XML element ship-addr because of the element
label. Similarly, the XML representation of a bill ad-
dress is enclosed in an XML element bill-addr. Be-
cause the attributes of Addresspsm are separated to the
attribute container, the XML elements ship-addr and
bill-addr have child elements street, postcode
and city.

The PSM association going to Itempsm with element
label ol specifies that items are nested in the purchase. An
XML representation of each item is enclosed in an XML
element ol. The PSM association going from Itempsm
to Productpsm specifies that each item has nested a pur-
chased product. Because Productpsm does not have an
element label, the XML representation of the product,
which is XML attribute product-code, is not enclosed
in a separate XML element but propagated to the upper
XML element ol.

3.3 Nesting Joins

Each PSM class represents a PIM class. It means that se-
mantics of the PSM class is specified by the PIM class.
In this section, we propose a formalism for specifying se-
mantics of PSM associations. Informally, semantics of a
PSM association specifies what child instances are nested
in a given parent instance.

Basically, semantics of a PSM association Apsm can be
specified by a PIM association Apim. Assume that Apsm

goes from a PSM class Cpsm to a PSM class C ′psm where
the PSM classes represent PIM classes C and C ′, respec-
tively. The semantics of Apsm can be specified by Apim

if Apim connects C and C ′. In that case Apsm nests an
instance of C ′ in an instance of C if the instances are con-
nected by Apim.

Since PSM diagrams represent views on PIM dia-
grams, we need a more advanced mechanism to specify
semantics of PSM associations. The first generalization
discussed in this paper is specification of semantics by a
path in a PIM diagram instead of PIM association. The
principle is similar to the previous case since a PIM asso-
ciation can be comprehended as a path of length 1. Infor-
mally, a path goes from a PIM class C to a PIM class C ′. If
the semantics of a PSM association Apsm is described by
this path, Apsm nests an instance of C ′ in an instance of C
if the instances are connected by the path. We define paths
in PIM diagrams formally in the following definition.

Definition 1 A PIM path P is an expression C1−· · ·−Cn
where C1, . . ., Cn are PIM classes and for each 1 ≤ i <
n, there is a PIM association connecting Ci with Ci+1.
If there are two or more associations connecting Ci and
Ci+1, we need to distinguish the required association by
its name l and write (l, Ci+1) instead of Ci+1. We say that
P goes from C1 to Cn. Cn is called terminal class of P .

Consistency between a PIM diagram and derived PSM
diagrams is ensured by the following definition.

Definition 2 If a PIM path C1−· · ·−Cn specifies the se-
mantics of a PSM association Apsm, we say that Apsm
represents the PIM path. Apsm can represent the PIM
path only if Cpsm represents C1 and C ′psm represents Cn.

Formally, the semantics of a PSM association repre-
senting a PIM path is defined by the following definition.

Definition 3 Let Apsm be a PSM association represent-
ing a PIM path C1−· · ·−Cn. Let c1 and cn be instances
of C1 and Cn, respectively. Apsm nests cn in c1 if cn ∈
c1JC1−· · ·−CnK. c1JC1−· · ·−CnK denotes a set that is
defined recursively as follows:

ciJCi−. . .−CnK =
⋃

ci+1∈ci(Ci+1)
ci+1JCi+1−. . .−CnK,

cnJCnK ={cn}
where ci(Ci+1) is a set of all instances of Ci+1 connected
with ci by the respective PIM association. If cn ∈ c1JC1−· · ·−CnK, we say that cn is accessible by P from c1.

Example 4 The semantics of all PSM associations de-
picted in Figure 4 can be specified by PIM associations
depicted in Figure 3. For example, the PIM association
named ship connecting PIM classes Purchase and Address
specifies the semantics of the PSM association going from
Purchasepsm to Addresspsm.

On the other hand, there can be PSM associations
whose semantics can not be described simply by a PIM
association. Suppose for example a PSM diagram de-
picted in Figure 5 on the right. There is a PSM association
going from Productpsm to Regionpsm. However, there is
no PIM association in the PIM diagram in Figure 3 con-
necting Product and Region. We need to specify that the
PSM association nests in each product a list of regions

from where the product was purchased. This semantics
is specified in terms of the PIM diagram by a PIM path
Product−Item−Purchase−(bill,Address)−Region.

We further propose a generalization of PIM paths for
describing semantics of PSM associations. This general-
ization is called nesting join. Suppose again a PSM associ-
ation Apsm with semantics specified by a PIM path going
from a PIM class C to C ′. This semantics can also be in-
terpreted as a grouping of instances of C ′ by Apsm. More
precisely, instances of C ′ form a group if they are nested
by Apsm in the same instance of C. Therefore, each in-
stance of C has a nested group of instances of C ′. This
group is defined by Apsm. We can extend this mechanism
to grouping instances of C ′ not only by its parent but also
one or more ancestors. The best way to explain this is to
show an example.

Example 5 Suppose a PSM diagram depicted in Figure 5
on the left. There is a PSM class Supplypsm. It has ances-
tors Supplierpsm, Partpsm and ProductSetpsm. Supplypsm
represents a PIM class Supply which models supplies of
parts. Parts are supplied by suppliers. A product set is
produced from supplied parts. For each supply, we there-
fore have its supplier, supplied part, and product set. In
the PSM diagram, we want to model an XML structure
where supplies are grouped by suppliers, parts and prod-
ucts sets. More precisely, supplies form a group if they
have the same supplier, part and product set. To repre-
sent this grouping in the required hierarchical structure,
the PSM association going from Supplierpsm to Partpsm
must nest a part in a supplier if there is a supply of the
part by the supplier. Further, the PSM association going
from Partpsm to ProductSetpsm must nest a product set in
a part, that is nested in a given supplier, if there is a supply
of the part to the product set by the supplier. Finally, the
PSM association going from ProductSetpsm to Supplypsm
must nest a supply in a product set, that is nested in a given
part and supplier, if the supply is supplied by the supplier
and supplies the part to the product set. We can also say
that a supply is nested in a product set in the context of a
part and supplier.

We use nesting joins to describe such semantics. A
nesting join must specify a grouped PIM class (e.g. Sup-
ply), joined PIM classes (e.g. Supplier with Part, Part
with ProductSet, or ProductSet with Supply, respectively),
and PIM classes that form the context for the grouping
(e.g. empty context for the former PSM association, Sup-
plier for the second, and Supplier and Part for the other,
respectively).

In the rest of this section, we introduce nesting joins
formally. Before this, we define some auxiliary terms.

Definition 4 We say that a PIM path is direct if it does not
contain the same PIM class twice or more times. The only
exception is the beginning and end of the path.

Definition 5 Let P be a PIM path. rev(P) denotes P in
the reversed direction. It goes from Cn to C1 through the
same PIM associations as P .

Now, we are ready to define nesting joins formally.

Definition 6 A nesting join is described by an expression

CP1,...,Pk [P → Q]

C is a PIM class whose grouping is described by the nest-
ing join. P1, . . ., Pk are direct PIM paths that go from
C to PIM classes that form a context for the grouping. P
and Q are direct PIM paths that go from C. P and Q
are called parent and child of the nesting join. The arrow
between P and Q specifies an orientation of the nesting
join. To simplify the expression, we can leave the starting
C from P1, . . ., Pk, P and Q, since they must start with C
anyway.

Figure 5: Supplier Report and Product Distribution PSM
Diagrams

Consistency between a PIM diagram and derived PSM
diagrams is ensured by the following definition.

Definition 7 If a nesting join CP1,...,Pk [P → Q] specifies
the semantics of a PSM association Apsm, we say that
Apsm represents the nesting join. Let Apsm goes from a
PSM class Cpsm to C ′psm that represent PIM classes C
and C ′, respectively. Apsm can represent the nesting join
only if the following conditions are satisfied:

(J1) C and C ′ are terminal classes of P and Q, respec-
tively

(J2) if k > 0, there is a PSM association that
goes to Cpsm and represents a nesting join
CP1,...,Pk−1 [Pk → P]

This ensures that PIM classes that form the context of
CP1,...,Pk [P → Q] are also represented in the PSM di-
agram as ancestors of the parent of Apsm. Formally, the
semantics of a PSM association representing a nesting join
is given by the following definition.

Definition 8 Let Apsm be a PSM association represent-
ing a nesting join CP1,...,Pk [P → Q]. For each k-tuple
p1, . . . pk, where pi is an instance of the terminal class
of Pi, Apsm nests an instance q of the terminal class of
Q in an instance p of the terminal class of P if there is
an instance c of C such that p ∈ cJP K, q ∈ cJQK, and
∀1 ≤ i ≤ k : pi ∈ cJPiK. We say that q is nested in p in
the context of p1, . . ., pk.

Example 6 Assume again the PSM diagram depicted in
Figure 5 on the left. As we explained before, its hierar-
chical structure represents grouping of instances of Sup-
ply. Therefore, we need nesting joins to specify the se-
mantics of PSM associations forming this structure. The
PSM association going from Supplierpsm to Partpsm nests
in each supplier a list of supplied parts. Formally, it nests
an instance part of Part in an instance supplier of Sup-
plier if there exists an instance supply of Supply such that
supplier ∈ supplyJ Supply−Supplier K and part ∈ supplyJ
Supply−Part K. This semantics is specified by a nesting join

Supply[Supply − Supplier → Supply − Part]

We can also leave the grouped class Supply, i.e. we can
write

Supply[Supplier → Part]
The PSM association going from Partpsm to

ProductSetpsm nests in each part a list of product
sets to which the part was supplied. Moreover, the
superior supplier has to be considered, i.e. the part
contains only the product sets to which it was supplied by
the supplier. Such semantics is specified by

<supplier-report <supplier-report
supplier-no="S1"> supplier-no="S2">

<supplied-part <supplied-part
part-no="P121"> part-no="P121">

<prodset amount="1200" <prodset amount="2000"
product-code="PR47"> product-code="PR32">

<supply amount="800"/> <supply amount="1500"/>
<supply amount="1600"/> </prodset>
</prodset> </supplied-part>

</supplied-part> <supplier-report>
<supplier-report>

Figure 6: Supplier Report XML Documents

SupplySupplier[Part → ProductSet]

Formally, for each superior instance supplier of
Supplier, the PSM association nests an instance
productset of ProductSet in an instance part of
Part if there exists an instance supply of Supply
such that supplier ∈ supplyJSupply − SupplierK,
part ∈ supplyJSupply − PartK, and productset ∈
supplyJSupply−ProductSetK. In other words, it joins
ProductSet instances with Supplier and Part instances
on the described conditions and groups the result by
Supplier and Part.

The PSM association going from ProductSetpsm to
Supplypsm nests in each product set a list of supplies sup-
plied by the superior supplier and supplying the superior
part. This semantics is specified by

SupplySupplier,Part[ProductSet →]

Two example XML documents modeled by this PSM di-
agram are depicted in Figure 6. The left–hand side XML
document is for a supplier with number ’S1’ and the right–
hand side is for a supplier with number ’S2’. We can
see that both supplied the same part with number ’P121’.
However, the part has nested in each XML document dif-
ferent product set depending on the superior supplier. This
is modeled by the context of the PSM association going
from Partpsm to ProductSetpsm.

Example 7 We can also use longer PIM paths in nest-
ing joins. Assume the PSM diagram depicted on the right
hand side of Figure 5. The PSM associations in the dia-
gram represent respectively the following nesting joins:

Purchase[Item−Product→(bill,Address)−Region]
PurchaseItem−Product[(bill, Address)−Region →]

The former specifies that the PSM association going
from Productpsm to Regionpsm nests an instance region
of Region in an instance product of Product if there exists
an instance purchase of Purchase such that product ∈
purchaseJPurchase−Item−ProductK and region ∈
purchaseJPurchase−(bill, Address)−RegionK. Infor-
mally, it connects to each product a list of regions from
where the product has been purchased. The latter speci-
fies that the PSM association going from Regionpsm to
Purchasepsm connects to each region the list of pur-
chases from the region that purchase the superior product.

We unify the proposed mechanisms for specifying se-
mantics of PSM associations (i.e. PIM associations, PIM
paths and nesting joins). We comprehend a PIM associa-
tion as a PIM path of length 1. Further, we comprehend a
PIM path P going from a PIM class C to C ′ as a nesting
join

C ′[rev(P) → C ′]

Both are equivalent since P nests instances of C ′ in in-
stances of C. In other words, it groups instances of C ′
and nests the groups to corresponding instances of C. This
grouping is described by the nesting join.

Example 8 Assume the PSM diagram in Figure 4.
The PSM association going from Purchasepsm to
Addresspsm with an element label ship-addr represents
a nesting join

Address[(ship, Purchase) →]

Formally, it nests an instance a of Address in an instance
p of Purchase if there exists an instance a′ of Address
such that p ∈ a′JAddress−(ship, Purchase)K and a ∈
a′JAddressK = {a′}, i.e. a = a′. Informally, it nests in
each purchase its ship address. The other PSM associ-
ations represent the following nesting joins respectively:
Address[(bill, Purchase) →], Messenger[Purchase
→], V an[Purchase →], Item[Purchase →] and
Product[Item→].

4 XML Schema Reverse Engineering

The conceptual model proposed in the previous section
can be used for modeling XML schemas as follows. We
first design a PIM diagram and model each XML schema
as a PSM diagram derived from the PIM diagram. The
PSM diagram can then be mechanically translated to an
XML Schema representation. In this paper, we are in-
terested in the reversed process that starts with one or
more XML schemas. We suppose that a conceptual PIM
diagram already exists and we need to construct PSM
diagrams that model the XML schemas in terms of the
PIM diagram. Since doing this manually would be time–
consuming and error–prone task, we show how to semi–
automate this process. We suppose XML Schema as a
language for syntactical description of XML schemas.

Formally, the problem is given as follows. We have
an XML schema Sxml and a PIM diagram Spim. We
need to construct a PSM diagram Spsm that models the
same XML format as Sxml and is derived from Spim.
In other words, PSM classes from Spsm must represent
PIM classes from Spim and PSM associations from Spsm
must represent nesting joins specified over components of
Spim. We separate the process to two steps. In a first step
a first approximation of the target Spsm is mechanically
derived from the XML schema. We call the result of the
first step initial PSM diagram. In a second step the first ap-
proximation is refined by mapping components of Spsm to
components of Spim. We describe both steps in detail in
the following subsections.

There can be situations that go beyond the scope of
the paper. First, we suppose that a given PIM diagram
and XML schemas model the same data. If not, it can be
impossible to fully map an XML schema to the PIM dia-
gram since a required attribute, class or association can be
missing. This requires a refinement of the PIM diagram
which is not considered in this paper. Second, we sup-
pose only basic constructions for mapping, i.e. mapping
a PSM attribute/class to an equivalent PIM attribute/class
and mapping a PSM association to an equivalent nesting
join. However, there can be more complex situations that
require, e.g. to map a concatenation of more PSM at-
tributes to one PIM attribute. This situations are not there-
fore covered by this paper. On the other hand, it is only
a technical problem to extend the proposed solution with
such mapping constructs.

Our solution can not automatically provide the right
solution of the mapping problem. We only look for a good
approximation. It means that we estimate a mapping of a
given component of an XML schema to components of
the PIM diagram. However, the final decision about the
mapping is left to a domain expert.

4.1 Initial PSM Diagram Construction

The translation of Sxml to an initial PSM diagram starts
with global element declarations in Sxml. Only those hav-
ing assigned a complex type are considered. The transla-

Figure 7: Initial PIM Diagram

tion continues recursively to declarations of their child el-
ements. To simplify the algorithm for the purposes of this
paper, we suppose that all complex types are defined glob-
ally in the XML schema (locally defined complex types
can be transformed to global declarations by assigning
auxiliary names). Moreover, we do not work with vari-
ous simple types that can be defined with XML Schema
constructs. We consider all of them as they were the basic
XML Schema simple type string.

Let E be an element declaration with a name l and
complex type T . We need to translate E and T . Since,
there can be more element declarations sharing T , it is
possible that T has already been translated during the
translation of another element declaration. Therefore, the
translation of E depends on whether T has been translated
or not. Formally, E is translated as follows:

(E1) If T has not been translated yet, E is translated to a
PSM class Cpsm with an element label l. The name
of Cpsm is given by the name of T (because it is de-
fined globally, it must have a name). Moreover, Cpsm
is set as so called base class of T . T is translated as
we describe in a while ((T1–3) below).

(E2) If T has already been translated during the transla-
tion of another element declaration E′, it has a base
class C ′psm. C ′psm is the result of the translation of
E′ according to (E2). In that case E is translated to
a structural representative of C ′psm. The structural
representative has an element label l.

If T has not been translated yet, we need to trans-
late its attribute declarations and content model. A dec-
laration of an attribute A with a name l is translated to
a PSM attribute of Cpsm with a name l. The content
model of T can be defined by various XML Schema con-
structs. As we mentioned in Section 2, we consider only
sequence. A sequence can contain element declara-
tions and choice constructs. A choice construct can
contain element declarations. The components of the con-
tent model of T are translated as follows:

(T1) Element declaration E′ with a name l and simple
type T ′ is translated to a PSM attribute with a name l.
The cardinality of the new attribute is set according to
minOccurs and maxOccurs of E′. The attribute
is placed into an attribute container assigned to Cpsm.
If there are more sibling element declarations with a
simple type, the resulting attributes are coupled into
one attribute container.

(T2) Element declaration E′ with a complex type T ′ is
translated to a PSM class or structural representative
C ′psm according to (E1–2). A PSM association Apsm

going from Cpsm to C ′psm is created. The values of
minOccurs and maxOccurs of E′ are used as the
minimal and maximal cardinality of C ′psm in Apsm.

(T3) choice is translated to a content choice assigned
to Cpsm. The element declarations in the choice
are translated recursively according to (T1–2) but as-
signed to the content choice instead of Cpsm.

Example 9 Assume the XML schema depicted in Fig-
ure 2. It is translated to an initial PSM diagram
depicted in Figure 7. There is one global element
declaration order-request with a complex type
OrderRequest. Because OrderRequest has not
been translated yet, order-request is translated ac-
cording to (E1) to a PSM class OrderRequestpsm with
an element label order-request.

Further, OrderRequest is translated. The attribute
declaration issue-date is translated to a PSM at-
tribute issue-date of OrderRequestpsm. The content
model of OrderRequest is translated as follows.

The element declaration ship-addr has a complex
type Address and (T2) is applied. ship-addr is trans-
lated according to (E1) because Address has not been
translated yet. The result is a PSM class Addresspsm
with an element label ship-addr. A PSM association
going from OrderRequestpsm to Addresspsm is cre-
ated. The cardinality constraint of Addresspsm in the
PSM association is 0..1. Within the scope of the trans-
lation of ship-addr, Address is translated. It has
no attributes and its content model contains element dec-
larations street, postcode and city with simple
types. They are translated according to (T1) to an attribute
container assigned to Addresspsm with PSM attributes
street, postcode and city, respectively.

The element declaration bill-addr has a complex
type Address and (T2) is applied. Because Address
has already been translated, bill-addr is translated
according to (E2) to a structural representative of the base
class of Address which is Addresspsm. The structural
representative has an element label bill-addr. A PSM as-
sociation going from OrderRequestpsm to the structural
representative is created.

The choice is translated according to (T3) to a con-
tent choice in OrderRequestpsm. The element declara-
tions messenger and van are translated according to
(T2) to PSM classes Messengerpsm and V anpsm with
element labels messenger and van, respectively.

The element declaration ol has a complex type OL
and (T2) is applied. (E1) is further applied because the
complex type has not been translated yet. A PSM class
OLpsm is created with an element label ol. The decla-
ration of the attribute product-code is translated to a
PSM attribute product-code. The declarations of the ele-
ments price and quantity are translated according to
(T1) to PSM attributes price and quantity in an attribute
container assigned to OLpsm.

4.2 PSM Diagram Semantics Refinement

An initial PSM diagram captures structure of Sxml. How-
ever, we also need to describe semantics of Sxml in terms
of the PIM diagram Spim. It means to map components
of Sxml to components of Spim. A naı̈ve solution is to let
a domain expert to map the components manually. How-
ever, this is an error–prone and time–consuming task.

In this section, we propose an algorithm for semi-
automatic mapping of Sxml to Spim. It is semi-automatic
since it just provides with mapping suggestions but still
requires a participation of a domain expert. In the first
two subsections we describe complementary algorithms
for measuring similarity of strings and PIM paths weight-
ing. In the third subsection, we describe the mapping al-
gorithm in detail.

4.2.1 String Similarity

We will need to compute the similarity between two
strings s1 and s2. We could utilize various widely known
algorithms for measuring syntactical and semantical sim-
ilarity (see (Shvaiko & Euzenat 2005) for their survey).
For simplicity, we utilize only the longest common sub-
string of s1 and s2 since advanced algorithms for mea-

01weightPaths(PIMClass C, PIMClass C′, String[] S)

02 int[] result;

03 for each PIM path P going from C to C′

04 result[P] := w(P, S)

05 return result

Figure 8: PIM Path Weighting Algorithm

suring string similarity are not in our main interest in this
paper. The similarity between s1 and s2 is computed as

sim(s1, s2) =
l(s1, s2)

max{l(s1), l(s2)}
where l(s1, s2) denotes the length of the longest common
substring of s1 and s2 and l(s) denotes the length of s.

We will also need to measure the similarity between
two sets of strings S1 and S2. It is computed as a sum of
pairwise similarities of strings from S1 with strings from
S2 normalized by the number of pairs:

ssim(S1, S2) =

∑
s1∈S1,s2∈S2

sim(s1, s2)
|S1||S2|

4.2.2 PIM Paths Weighting

We will also utilize an auxiliary algorithm weightPaths
that weights direct PIM paths going from a PIM class C
to a PIM class C ′. The algorithm is depicted in Figure 8.
It has C and C ′ as parameters. The third parameter S is a
set of strings that influences the weight of the PIM paths.
A weight of a given PIM path P is a number from the
interval (0, 1) (including 0 and 1). It decreases with the
growing length of P and increases with the similarity of
the labels of the PIM associations and names of the PIM
classes along P with the strings from S.

Formally, the weight of a given direct PIM path P =
C1 − . . .− Cn is computed as follows:

w(P, S) = (
n−1∑

i=1

1 + ssim({ai, ci+1}, S)
i

) ∗ 1
2n

where for each i ∈ [1, n], ci is the name of the PIM class
Ci and for each i ∈ [1, n − 1], ai is the label of the PIM
association connecting Ci and Ci+1 in P .

4.2.3 Semi–automatic Mapping Algorithm

In this section we propose a semi–automatic algorithm
classMap that maps components of an initial PSM dia-
gram Sxml to components of a PIM diagram Spim. The
algorithm is depicted in Figure 11. We start by applying
classMap on the root PSM class Sxml. It maps the root
to a corresponding PIM class and follows recursively to
the descendants. According to the classification proposed
in (Shvaiko & Euzenat 2005), the proposed algorithm be-
longs to the class of structural schema–based mapping
techniques that measure similarity of the schema compo-
nents on the base of children in a combination with string
based techniques.

For an actual PSM class Cpsm from Sxml, classMap
proceeds in the following steps:

• Class Mapping Estimation computes a similarity of
Cpsm with each PIM class C. The similarity is a
combination of a similarity of names and attributes
of both classes as well as a similarity of children of
Cpsm with neighbors of C. Therefore, it does not
use only basic syntactical similarity but also struc-
tural similarity of the neighborhood of Cpsm with the
neighborhood of C.

01 attrSim(PIMClass C, PSMAttribute Attrpsm)

02 int[][] result;

03 for each PIM attribute Attr

04 PIMClass C′ := Attr.class;

05 int sim := sim(Attrpsm.name, Attr.name);

06 if C = C′

07 result[Attr][.] := sim;

08 else

09 string labels[] := {Attrpsm.name};
10 result[Attr] := weightPaths(C, C′, labels);

11 for each direct PIM path P going from C to C′

12 result[Attr][P] := result[Attr][P] ∗ sim;

13 return result;

Figure 9: Attribute Similarity Algorithm

• Class Mapping Specification is performed by the do-
main expert who selects a PIM class for mapping of
Cpsm from the list of PIM classes ordered by their
similarity with Cpsm computed in the previous step.

• Association Mapping performs mapping of a PSM
association going to Cpsm, if there is any. Since a
parent C ′psm of the PSM association as well as its
child Cpsm are mapped to PIM classes C ′ and C, re-
spectively, the algorithm offers the list of PIM paths
connecting C ′ and C ordered by their weights (see
weightPaths algorithm depicted in Figure 4.2.2).
The domain expert selects the right PIM path from a
list of the PIM paths ordered by their weights. From
the selected PIM path, an equivalent nesting join is
constructed for mapping of the PSM association.

• Subtree Mapping performs mapping of attributes of
Cpsm and recursive mapping of the subtree of Cpsm.

Example 10 Figure 4 shows the resulting PSM diagram
after applying classMap on OrderRequestpsm from the
initial PSM diagram depicted in Figure 7.

If Cpsm is a structural representative of C ′psm, it must
represent the same PIM class as C ′psm (lines 02–05,
Cpsm.pim denotes the PIM class represented by Cpsm).
Otherwise, the four steps are performed. In the rest of this
sections, we describe each step in detail.

(1) Class Mapping Estimation. The first part of the
classMap algorithm (lines 06–15) estimates mapping
of Cpsm. It measures a similarity of Cpsm with each PIM
class C. First, it computes a string similarity of a name of
Cpsm with a name of C and similarity of an element label
of Cpsm with the name of C. The maximum of the two
values is stored to initSim (line 08).

Next, classMap estimates mapping of the PSM at-
tributes in Cpsm and in attribute containers assigned to
Cpsm (lines 09–11). It assumes that Cpsm is mapped to
C. The estimation itself is computed for each PSM at-
tribute Attrpsm of Cpsm at line 11 by calling attrSim
depicted in Figure 9. attrSim takes C and Attrpsm as
parameters and computes a 2-dimensional matrix called
attribute similarity matrix. The matrix is computed as
follows. Attrpsm can be mapped to any PIM attribute
Attr. Attr can be an attribute of C or an attribute of
another PIM class C ′. In the former case, the similar-
ity of Attrpsm with Attr is computed as a similarity of
their names (line 07). In the latter case, the similarity
is moreover influenced by direct PIM paths connecting C
and C ′. This corresponds to a natural intuition. Attrpsm
is a PSM attribute of Cpsm. We consider that Cpsm is
mapped to C. If Attrpsm is mapped to Attr of C ′, Cpsm

represents a join of C and C ′. Therefore, there must be a
direct PIM path connecting C and C ′ otherwise the join
can not be performed. Because there can be more direct
PIM paths connecting C and C ′, we assign a weight to
each of them by calling weightPaths (line 10) with pa-
rameters C, C ′ and {Apsm.name}. The weight of a given

01 childSim(PIMClass C, PSMClass C′psm)

02 int[][] result;

03 for each PIM class C′

04 int sim := max(sim(C′psm.name), C′.name),

sim(C′psm.label, C′.name));

05 string labels[] := {C′psm.name, C′psm.label};
06 result[C′] := weightPaths(C, C′, labels);

07 for each direct PIM path P going from C to C′

08 result[C′][P] := result[C′][P] ∗ sim;

09 return result;

Figure 10: Child Similarity Algorithm

direct PIM path P increases with a decreasing length of P
and with a growing similarity of names and labels along
P with the name of Attrpsm. The resulting similarity of
Attrpsm with Attr for a given PIM path P is the weight
of P multiplied by the string similarity of the names of
Attrpsm and Attr (line 12). attrSim returns the simi-
larity of Attrpsm with each PIM attribute Attr for each
direct PIM path connecting C and C ′ where C ′ is the PIM
class of Attr. Note that . at line 07 denotes an empty PIM
path and is added to suit the structure of the result.

The algorithm classMap does not consider the whole
attribute similarity matrix for C and Apsm to estimate the
mapping of Cpsm. It uses only the maximal value in the
matrix (line 11) which is added to the variable attrSim.
The whole matrix is used later to suggest mapping of at-
tributes to the domain expert.

Finally, classMap estimates mapping of children of
Cpsm (lines 12–14). It considers that Cpsm is mapped to
C. The estimation of a mapping of a given child C ′psm is
computed by childSim depicted in Figure 10. It has C
and C ′psm as parameters and returns a 2-dimensional ma-
trix called child similarity matrix. C ′psm can be mapped
to any PIM class. For an actual PIM class C ′, the sim-
ilarity of C ′psm and C ′ is measured as follows. First,
the similarity of the name and element label of C ′psm

with the name of C ′ is computed (line 04) and stored
to sim. Second, PIM paths connecting C and C ′ are
weighted by weightPaths with parameters C, C ′ and
{C ′psm.name,C ′psm.label} (line 06). This corresponds
to a natural intuition. C ′psm is a child of Cpsm. Cpsm

is mapped to C (consideration). Therefore, C ′psm can be
mapped to C ′ if there is a PIM path connecting C and
C ′. There can be more such PIM paths. The weight of a
given PIM path P increases with a decreasing length of P
and with a growing similarity of names and labels along
P with the name and element label of C ′psm. Finally, we
multiply the weight of a each PIM path connecting C and
C ′ by sim (lines 07–08). childSim returns the similar-
ity of C ′psm with each PIM class C ′ for each direct PIM
path connecting C and C ′.

The result of childSim is utilized by classMap at
line 14. Only its maximum is considered and is added to
the variable childSim. The whole matrix is used later for
mapping PSM associations.

The estimated similarity of Cpsm with C is computed
as an avg of initSim, attrSim and childSim (line 15).

Example 11 Assume classMap applied on Order-
Requestpsm. The first part of the algorithm estimates map-
ping of OrderRequestpsm by computing its similarity with
each PIM class. We show how the similarity of Order-
Requestpsm with Purchase is computed.

Similarity of the name, resp. element label, of Order-
Requestpsm with the name of Purchase is computed first
and the maximum of both is taken. The result is 0.08 since
their common substring has length 1.

Next, the algorithm estimates mapping of the attributes
of OrderRequestpsm. For each of the attributes, the at-

01 classMap(PSMClass Cpsm)

02 if Cpsm is structural representative of C′psm

03 Cpsm.pim := C′psm.pim;

04 Cpsm.name := C′psm.name;

05 return;

06 int[] estimatedSim;

07 for each PIM class C

08 int initSim := max(sim(Cpsm.name, C.name),

sim(Cpsm.label, C.name));

09 int attrSim := 0;

10 for each Attrpsm ∈ Cpsm.attrs

11 attrSim := attrSim + max(attrSim(C, Attrpsm));

12 int childSim := 0;

13 for each C′psm ∈ Cpsm.childClasses

14 childSim := childSim + max(childSim(C, C′psm));

15 int estimatedSim[C] :=
initSim+attrSim+childSim

1+size(Cpsm.attrs)+size(Cpsm.children) ;
16 show PIM classes ordered by estimatedSim in

descending order;

17 user selects a candidate C for mapping of Cpsm;

18 Cpsm.pim := C;

19 if Cpsm is not a root

20 Apsm := PSM association going to Cpsm;

21 Cpar
psm := Cpsm.parentClass;

22 Cpar := Cpar
psm.pim;

23 string labels[] := {Cpsm.name, Cpsm.label};
24 weights := weightPaths(Cpar, C, labels);

25 show PIM paths going from Cpar to C ordered by

weights in descending order

26 user selects a PIM path P from the list

for mapping of Apsm;

27 Apsm.pim := C[rev(P) → C];

28 for each C′psm ∈ Cpsm.childClasses

29 classMap(C′psm);

30 for each Attrpsm ∈ Cpsm.attrs

31 attrMap(Attrpsm);

Figure 11: Class Mapping Algorithm

tribute similarity matrix is computed by attrSim with a
consideration that OrderRequestpsm is mapped to Pur-
chase. The matrix contains a field for each PIM attribute
Attr and each direct PIM path going from Purchase to
the PIM class of Attr.

Assume the matrix for the PSM attribute issue-
datepsm. We show the computation of the similarity of
issue-datepsm with the following three PIM attributes:

• date of Purchase: sim(issue-date, date) = 0.40 is
computed and line 07 is applied.

• completion-date of ProductSet: sim(issue-date,
completion-date) = 0.33 is computed and lines
09–12 are applied. weightPaths with parame-
ters Purchase, ProductSet and string issue-date
is called. It finds each direct PIM path going
from Purchase to ProductSet and computes its
weight. There are several PIM paths. For exam-
ple, the weight of Purchase − (ship,Address) −
(ship, Supply) − ProductSet is 0.34. The result-
ing similarity of issue-datepsm with completion-date
for this PIM path is therefore 0.33 ∗ 0.34 = 0.11.
All other PIM paths have a lower weight and are not
therefore considered for the estimation.

• supply-date of Supply: Analogously, we get 0.21.

The similarity of issue-datepsm with other PIM at-
tributes is insignificant. We return back to classMap.
The algorithm takes only the maximal value 0.40 from
the matrix, i.e. the mapping of issue-datepsm to the PIM
attribute date of Purchase is considered. The vari-
able attrSim summarizing the maximal similarities of
the attributes of OrderRequestpsm with PIM attributes
is therefore increased by 0.40.

issue-date ship-addr bill-addr messenger van ol init est

Purchase 0.40 0.74 0.74 0.75 0.75 0.07 0.08 0.50
da (sh,Ad) (bi,Ad) Me Va (bi,Ad)-(bi,Su)

Supply 0.46 0.74 0.74 0.38 0.35 0.07 0.08 0.40
su-da (sh,Ad) (bi,Ad) (sh,Ad)-(sh,Pu)-Me (sh,Ad)-(sh,Pu)-Va (sh,Ad)-Re

ProductSet 0.33 0.45 0.45 0.30 0.29 0.08 0.08 0.28
co-da Su-(sh,Ad) Su-(bi,Ad) Su-(sh,Ad)-(sh,Pu)-Me Su-(sh,Ad)-(sh,Pu)-Va Pr

Table 1: Evaluation of OrderRequestpsm Mapping Estimation

After the estimation of mapping of the attributes of
OrderRequestpsm, the algorithm classMap estimates
mapping of the children of OrderRequestpsm. It com-
putes for each child C ′psm of OrderRequestpsm the child
similarity matrix by calling childSim (line 14) with
a consideration that OrderRequestpsm is mapped to
Purchase. The matrix contains a field for each PIM class
C ′ and direct PIM path going from Purchase to C ′.

Assume the computation of the child similarity ma-
trix for the child Addresspsm with the element la-
bel ship-addr. childSim computes the similarity of
Addresspsm with each PIM class C ′ for each PIM path
going from Purchase to C ′. An interesting PIM class
is Address. childSim computes the string similar-
ity of the names of Addresspsm and Address which
is 1 (line 04). The similarity of the element label of
Addresspsm with the name of Address is lower. Fur-
ther, PIM paths going from Purchase to Address are
weighted by weightPaths with parameters Purchase,
Address and strings ’address’ and ’ship-addr’. There
are two such PIM paths: Purchase − (ship,Address)
and Purchase − (bill, Address) with weights 0.74 and
0.68, respectively. The string ’ship-addr’ influences the
weight of the former because there is a label ship along
the path which has non-zero similarity with ’ship-addr’.
The weights are then multiplied by sim = 1.

The similarity of Addresspsm with other PIM classes
is insignificant. After the matrix for Addresspsm is com-
puted, we return back to classMap where we take only
the maximal value from the matrix, i.e. 0.74.

Finally, the estimated similarity of OrderRequestpsm
with Purchase is computed. The result is depicted in Ta-
ble 1 in the last column (see Example 12 for details).
Example 12 Table 1 shows the estimated similarity
of OrderRequestpsm with PIM classes Purchase,
Supply and ProductSet in the last column est.
These PIM classes have the highest similarity with
OrderRequestpsm. For each PIM class, we show the
maximal value from the attribute similarity matrix for the
attribute issue-datepsm. We also show the correspond-
ing PIM attribute for which the similarity was computed2.
For example, the column (Supply,issue-date) shows the
maximum from the attribute similarity matrix for issue-
datepsm and Supply. It was computed for the PIM at-
tribute supply-date of Supply. We further show the max-
imal value from the child similarity matrix for each child
of OrderRequestpsm. We show the corresponding PIM
path for each value. For example, the cell (Supply,
messenger) shows the maximal value from the child
similarity matrix for the child Messengerpsm and PIM
class Supply. It also shows the PIM path for which the
value was computed, i.e. Supply − (ship,Address) −
(ship, Purchase)−Messenger.

Table 2 shows the estimated similarity of the PSM class
OLpsm with PIM classes Item and Address. The simi-
larity with other PIM classes is insignificant. It shows that
we can estimate the similarity even though the name and
element label of the PSM class have nothing in common
with the names of the PIM classes.

(2) Class Mapping Specification. The second part of
classMap (lines 16–18) performs the mapping of Cpsm

2PIM paths and attributes in the table are abbreviated – for each step and at-
tribute only the first two characters are shown

product-code price quantity init est

Item 0.64 0.5 0.25 0.00 0.35
Pr.pr-cd un-pr am

Address 0.33 0.30 0.14 0.00 0.19
postcode Su.un-pr

Table 2: Evaluation of OLpsm Mapping Estimation

with a participation of the expert. It shows the list of PIM
classes ordered by their estimated similarity with Cpsm
(line 16) in descending order. The expert selects a PIM
class C (line 17) and Cpsm is mapped to C (line 18).
This completes the mapping of Cpsm.
Example 13 After the estimation of mapping of Order-
Requestpsm in Example 11, we show the list of all PIM
classes ordered by their estimated similarity with Order-
Requestpsm. The first three PIM classes are shown in Ta-
ble 1. The expert selects Purchase. OrderRequestpsm is
therefore mapped to Purchase.

(3) Association Mapping. The third part of the
classMap algorithm (lines 19–27) performs the map-
ping of the PSM association Apsm going to Cpsm if Cpsm

is not a root. Let Apsm go from C ′psm. We need to
find a nesting join that describes the semantics of Apsm.
We already have that C ′psm is mapped to a PIM class C ′

and Cpsm to C. We need a direct PIM path going from
C ′ to C as the base of the nesting join. The right PIM
path must be selected by the domain expert. The algo-
rithm only suggests suitable possibilities by weighting the
PIM paths (line 24). Afterwards, the expert selects a
PIM path P from the list of PIM paths ordered by their
weights (lines 25–26) and Apsm is mapped to a nesting
join C[rev(P) → C] (line 27). Furthermore, it can be
necessary to add a context to the nesting join. We describe
this possibility later in Section 4.2.4.
Example 14 We have OrderRequestpsm mapped to
Purchase. Assume that we have its child Addresspsm
with the element label ship-addr mapped to Address.
We need to map the PSM association going from
OrderRequestpsm to Addresspsm. The algorithm
weights direct PIM paths going from Purchase to
Address by calling weightPaths with parameters
Purchase, Address and strings ’address’ and ’ship-
addr’. The PIM paths were already weighted during the
estimation of mapping of OrderRequestpsm in Exam-
ple 11. We can therefore utilize the results. The algo-
rithm shows the PIM paths ordered by their weight in de-
scending order. The expert selects the path Purchase −
(ship,Address) and the PSM association is consequently
mapped to Address[(ship, Purchase) →]. If the as-
sociations connecting Purchase and Address were dis-
tinguished by labels with the same similarity with ’ad-
dress’ and ’ship-addr’, the PIM paths would have the
same weight and we could not suggest the right mapping.

(4) Subtree Mapping. Finally, classMap maps the
PSM attributes of Cpsm to PIM attributes and child PSM
classes of Cpsm to PIM classes (lines 28–31). Each child
is mapped recursively by classMap (line 29). Each at-
tribute is maped by an algorithm attrMap (line 31) de-
picted in Figure 12. It maps a PSM attribute Attrpsm in
Cpsm or in an attribute container assigned to Cpsm. Cpsm

01 attrMap(PSMAttribute Attrpsm)

02 C := Attrpsm.class.pim;

03 sim := attrSim(C, Attrpsm);

04 show an ordered list of PIM attributes,

the order of A is given by the maximal

value in sim[A] (descending order);

05 user selects a PIM attribute Attr to be

mapped to Attrpsm;

06 Attrpsm.alias := Attrpsm.name;

07 Attrpsm.pim := Attr;

08 C′ := Attr.class;

09 if C <> C′

10 PSM class C′psm is created;

11 C′psm.psm := C′;C′psm.name := C′.name;

12 move Attrpsm to C′psm;

13 PSM association Apsm is created;

14 Apsm.parent := Apsm.class;

15 Apsm.child := C′psm;

16 show PIM paths going from C to C′

ordered by sim[Attr] in descending order;

17 user selects a PIM path P for mapping to Apsm;

18 Apsm.pim := C′[rev(P) → C];

Figure 12: Attribute Map Algorithm

was mapped with C in the previous part. attrMap starts
with computing the attribute similarity matrix for Attrpsm
and C (line 03). The matrix was computed during the es-
timation of mapping Cpsm and can be reused. The algo-
rithm shows an ordered list of PIM attributes (line 04) in
the descending order. The order of a PIM attribute Attr is
given by the maximal value in sim[Attr]. The expert se-
lects a PIM attribute Attr from the list and Attr is mapped
with Attrpsm.

If Attr is from C, we are done. If Attr is not from C
but another PIM class C ′, Attrpsm can not stay with its
PSM class Cpsm because a PSM class representing C can
have only attributes of C. We therefore create a new PSM
class C ′psm representing C ′ (lines 10–11) and Attrpsm is
moved to C ′psm (line 12). C ′psm must be added as a child
of Cpsm. Therefore, a PSM association Apsm is created
with Cpsm as parent and C ′psm as child. Apsm must repre-
sent an appropriate nesting join. Therefore, we need to de-
termine an appropriate PIM path P going from C to C ′. P
is selected by the domain expert from the list of PIM paths
ordered by their weight in sim[Attr] (lines 16–17). Fi-
nally, Apsm is mapped to the nesting join C ′[rev(P) →].
Example 15 Assume that the PSM class OLpsm from
the initial PSM diagram was mapped to the PIM class
Item and we are mapping its PSM attribute product-
codepsm. attrMap gets the attribute matrix similarity
for product-codepsm and Item. It was computed dur-
ing the estimation of mapping of OLpsm. The algorithm
shows the list of PIM attributes ordered by their maxi-
mal estimated similarity with product-codepsm. The PIM
attribute product-code of the PIM class Product is the
most similar PIM attribute to product-codepsm as shown
in Table 2 in the cell (Item,product-code). The expert
selects product-code to be mapped to product-codepsm.
Because product-code is from Product and not Item, a
child PSM class Productpsm mapped to Product is cre-
ated and product-codepsm is moved here. Moreover, a
PSM association going from OLpsm to Productpsm is
created. attrMap displays the list of PIM paths going
from Item to Product ordered by their weights. The user
selects Item − Product and the new PSM association is
mapped to Product[Item →].

4.2.4 Setting Class Context

Assume a PSM association Apsm whose parent C ′psm rep-
resents a PIM class C ′ and child Cpsm represents C. The

algorithm classMap automatically maps Apsm to a nest-
ing join C[P → C] where P is a PIM path going from C
to C ′. The nesting join specifies that an instance c of C is
nested in an instance c′ of C ′ if c′ ∈ cJP K, i.e. C instances
are joined with C ′ instances and grouped by C ′. However,
this semantics can be wrong because it can be necessary
to add a context to the nesting join.

Since it is very hard to determine the context automat-
ically, we need a domain expert to decide. It should be as
easy as possible for the domain expert. We propose the
following procedure. After the semiautomatic mapping,
the expert selects a non-root PSM class Cpsm representing
a PIM class C. There is a PSM association Apsm going
to Cpsm. Apsm represents a nesting join C[P → C]. The
expert can add PIM classes represented by one or more an-
cestors of the parent of Cpsm to the context of the nesting
join. To satisfy the conditions (J1) and (J2) introduced in
Section 3.3, if an ancestor C ′′psm is considered, each PSM
class on the path from C ′′psm to the parent of Cpsm must be
considered too. Therefore, it is enough when the domain
expert specifies a number of the ancestors that should be
considered. Let k denote this number. For each of the an-
cestors, we need to add to the context the right PIM path
going from C to the PIM class represented by the ancestor.
Moreover, we also need to change the nesting joins repre-
sented by the PSM associations connecting the ancestors
because the conditions (J1) and (J2) introduced in Section
3.3 must be satisfied.

Formally, let C1,psm, . . ., Ck+2,psm be PSM classes
such that Ck+2,psm = Cpsm and Ci,psm is the parent
of Ci+1,psm for each i ∈ [1, k + 1]. Let Ci,psm rep-
resent a PIM class Ci for each i ∈ [1, k + 2] (Ck+2
= C). Let A1,psm, . . ., Ak+1,psm denote PSM associa-
tions where Ai,psm goes from Ci,psm to Ci+1,psm for each
i ∈ [1, k +1] (Ak+1,psm = Apsm). Let Ai,psm represent a
nesting join Ci+1[Pi → Ci+1] where Pi is a PIM path go-
ing to Ci for each i ∈ [1, k + 1]. Finally, we suppose that
for each i ∈ [1, k] the following conditions are satisfied:

(C1) Pi contains a step which is the PIM class C, i.e.
Pi = Pi,1 − C − Pi,2 (Pi,1 and Pi,2 can be empty),

(C2) Pi+1,2 = rev(Pi,1)−Ci+1 where rev(P) denotes P
in the reversed direction (we put Pk+1,2 = Pk+1).

If (C1–2) are not satisfied, the context can not be set.
Each PIM path C−Pi,2 determines a PIM path that we
need to put to the context. We therefore need to add the
PIM paths P1,2, . . ., Pk,2 to the context of the nesting join
represented by Apsm (= Ak+1,psm). The nesting joins
represented by A1,psm, . . ., Ak,psm must be updated as
well to satisfy the conditions (J1) and (J2).

For each i ∈ [1, k] we need Ai,psm to represent a nest-
ing join C[Pi,2 → Pi+1,2] instead of Ci+1[Pi,1 − C −
Pi,2 → Ci+1]. We show that the semantics described by
both nesting joins is the same. The former nests an in-
stance ci+1 of Ci+1 in an instance ci of Ci if the following
condition (S1) is satisfied:

(∃c ∈ JCK)(ci+1 ∈ cJC − Pi+1,2K ∧ ci ∈ cJC − Pi,2K)
i.e. if there is an instance c of C such that ci+1 is accessi-
ble from c by the PIM path C−Pi+1,2 and ci is accessible
from c by C − Pi,2. The latter nests ci+1 in ci if the fol-
lowing condition (S2) is satisfied:

ci ∈ ci+1JCi+1 − Pi,1 − C − Pi,2K
i.e. if ci is accessible from ci+1 by Ci+1−Pi,1−C−Pi,2.

We show that (S1) and (S2) are equivalent. Assume
that (S2) is satisfied for ci+1 and ci. It is equivalent to

(∃c ∈ JCK)(c ∈ ci+1JCi+1−Pi,1−CK∧ci ∈ cJC−Pi,2K)

i.e. (S2) is satisfied if and only if there is an instance c of
C such that c is accessible from ci+1 by Ci+1 − Pi,1 −C
and ci from c by C − Pi,2. This is further equivalent to

(∃c ∈ JCK)(ci+1 ∈ cJC − rev(Pi,1)− Ci+1K
∧ ci ∈ cJC − Pi,2K)

because if c is accessible from ci+1 by Ci+1 − Pi,1 − C
then ci+1 must be accessible from c by the reversed PIM
path C − rev(Pi,1)−Ci+1. Because (C2) is satisfied, we
can change rev(Pi,1)−Ci+1 with Pi+1,2 and we get (S1).
Therefore, we have that (S1) is equivalent with (S2).

Now, we can set the required context and ensure that
the conditions (J1) and (J2) from Section 3.3 are satisfied.
We set Apsm to represent a nesting join

CP1,2,...,Pk,2 [Pk+1,2 → C]

and for each i ∈ [1, k] we set Ai,psm to represent

CP1,2,...,Pi−1,2 [Pi,2 → Pi+1,2]

Example 16 We demonstrate the proposed technique on
a simple example. Assume the PSM diagram depicted on
the left side of Figure 5. It was reverse engineered from
an XML schema that we do not display. Its components
were mapped to components from the PIM diagram in Fig-
ure 3 by classMap. The ancestors of Supplypsm are
joined by PSM associations that represent nesting joins
Part[Supply − Supplier →], ProductSet[Supply −
Part →] and Supply[ProductSet →], respectively.
However, these joins do not describe the true semantics
of the PSM associations. The true semantics is that sup-
plies are considered in the context of suppliers, parts and
product sets as we showed in Example 6. Therefore, the
domain expert selects the PSM class Supplypsm and puts
k = 2 to specify that Supply instances are not grouped
only by ProductSet but also by the two ancestors Part
and Supplier. We can easily verify that the conditions
(C1–2) are satisfied. Both paths Supply − Supplier and
Supply − Part contain a step Supply and (C1) is there-
fore satisfied. We have the following P1,1 = ., P1,2 =
Supplier; P2,1 = ., P2,2 = Part; P3,2 = ProductSet
where rev(.)−Part = P2,2 and rev(.)−ProductSet =
P3,2 and (C2) is therefore satisfied as well. We can there-
fore update the nesting joins represented by the PSM as-
sociations according to the proposed technique as follows
(respectively):

Supply[Supplier → Part]
SupplySupplier[Part → ProductSet]
SupplySupplier,Part[ProductSet →]

5 Conclusions

We studied reverse engineering of XML schemas. We
supposed a set of XML schemas and an existing concep-
tual diagram. We proposed a semi–automatic method that
finds semantic interrelations between the XML schemas
and the conceptual diagram.

Currently, we are developing a tool for testing the pro-
posed method in practice. We plan to extend the proposed
algorithms with parameters for tuning them to fit real sce-
narios. It will be also necessary to further expand some
technical details of the algorithms. We presented only a
part of the conceptual model. The full model, that was
proposed in (Nečaský 2008), contains some technical ex-
tensions that allow to model more advanced XML features
and therefore need to be considered for reverse engineer-
ing as well. Further, some more advanced algorithms for
measuring not only syntactical but also semantical simi-
larity of strings could be utilized. Last but not least is an
optimization of the proposed algorithms.

References

Bernauer, M., Kappel, G. & Kramler, G. (2003), Repre-
senting XML Schema in UML - An UML Profile for
XML Schema, Technical report.

Bernauer, M., Kappel, G. & Kramler, G. (2004), Repre-
senting XML Schema in UML - A Comparison of Ap-
proaches, in N. Koch, P. Fraternali & M. Wirsing, eds,
‘ICWE’, Vol. 3140 of Lecture Notes in Computer Sci-
ence, Springer, pp. 440–444.

Chiticariu, L., Hernández, M. A., Kolaitis, P. G. & Popa,
L. (2007), Semi-Automatic Schema Integration in Clio,
in C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivas-
tava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,
V. Ganti, C.-C. Kanne, W. Klas & E. J. Neuhold, eds,
‘VLDB’, ACM, pp. 1326–1329.

Dobbie, G., Xiaoying, W., Ling, T. & Lee, M. (2000),
ORA-SS: An Object-Relationship-Attribute Model for
Semi-Structured Data, Technical Report TR21/00, Dpt.
of Computer Science, National University of Singa-
pore.

Domı́nguez, E., Lloret, J., Pérez, B., Rodrı́guez, Á., Ru-
bio, A. L. & Zapata, M. A. (2007), A Survey of UML
Models to XML Schemas Transformations, in B. Be-
natallah, F. Casati, D. Georgakopoulos, C. Bartolini,
W. Sadiq & C. Godart, eds, ‘WISE’, Vol. 4831 of Lec-
ture Notes in Computer Science, Springer, pp. 184–195.

Jensen, M. R., Møller, T. H. & Pedersen, T. B. (2003),
‘Converting XML DTDs to UML diagrams for concep-
tual data integration’, Data Knowl. Eng. 44(3), 323–
346.

Mani, M. (2004), EReX: A Conceptual Model for XML,
in Z. Bellahsene, T. Milo, M. Rys, D. Suciu & R. Un-
land, eds, ‘XSym’, Vol. 3186 of Lecture Notes in Com-
puter Science, Springer, pp. 128–142.

Miller, J. & Mukerji, J. (2003), MDA Guide
Version 1.0.1, Object Management Group.
http://www.omg.org/docs/omg/03-06-01.pdf.

Nečaský, M. (2007), XSEM - A Conceptual Model for
XML, in J. F. Roddick & A. Hinze, eds, ‘Fourth
Asia-Pacific Conference on Conceptual Modelling
(APCCM2007)’, Vol. 67 of CRPIT, ACS, Ballarat,
Australia, pp. 37–48.

Nečaský, M. (2008), Conceptual Modeling for XML, PhD
thesis, Charles University. http://kocour.ms.
mff.cuni.cz/˜necasky/dw/thesis.pdf.

Routledge, N., Bird, L. & Goodchild, A. (2002), UML and
XML Schema, in X. Zhou, ed., ‘Australasian Database
Conference’, Vol. 5 of CRPIT, Australian Computer So-
ciety.

Shvaiko, P. & Euzenat, J. (2005), ‘A Survey of Schema-
Based Matching Approaches’, J. Data Semantics
6, 146–171.

Thompson, H. S., Beech, D., Maloney, M. & Mendelsohn,
N. (2004), XML Schema Part 1: Structures (Second
Edition), W3C. http://www.w3.org/TR/xmlschema-1/.

Yang, W., Gu, N. & Shi, B. (2006), Reverse Engineering
XML, in J. Ni & J. Dongarra, eds, ‘IMSCCS (2)’, IEEE
Computer Society, pp. 447–454.

Yu, A. & Steele, R. (2005), An Overview of Research
on Reverse Engineering XML Schemas into UML
Diagrams, in ‘ICITA (2)’, IEEE Computer Society,
pp. 772–777.

