LBR-Meta: An Efficient Algorithm for Lazy Bayesian Rules

Zhipeng Xie
School of Computer Science
Fudan University
220 Handan Road, Shanghai 200433, PR. China
xiezp@fudan.edu.cn

Abstract

LBR is a highly accurate classification algorithm, which lazily constructs a single Bayesian rule for each test instance at classification time. However, its computational complexity of attribute-value pair selection is quadratic to the number of attributes. This fact incurs high computational costs, especially for datasets of high dimensionality. To solve the problem, this paper proposes an efficient algorithm LBR-Meta to construct lazy Bayesian rules in a heuristic way. It starts with the global classifier trained on the whole instance space. At each step, the attribute-value pair that best differentiates the performance of the current local classifier is selected and used to reduce the current subspace to a further smaller subspace for the next step. The selection strategy used has a linear computational complexity with respect to the number of attributes, in contrast to the quadratic complexity in LBR. Experimental results manifest that LBR-Meta has achieved comparable accuracy with LBR, but at a much lower computational cost.

Keywords: naïve Bayesian classifiers, lazy Bayesian rules, classification, decision trees.

1 Introduction

Classification is a core problem in machine learning and data mining. A variety of approaches such as naïve Bayes, nearest neighbours, decision trees, and neural networks, have been proposed to deal with it. However, none of these approaches can beat the others on all domains. Each approach has its own strong and weak points. Recently, a hotspot is to combine different learning paradigms together for higher overall predictability.

Among these numerous existing classification methods, the naïve Bayesian classifier (NB) (Duda & Hart 1973) is simplest and computationally most efficient. It is also robust to noise and irrelevant attributes, and has outperformed many complicated methods in varied application domains. However, all these advantages are obtained through its strong (or sometimes impractical) independence assumption that the attributes are conditionally independent given the class label. As a result, its performance may degrade significantly in the domains where the assumption does not hold. To alleviate this problem, Kohavi (1996) proposed a hybrid algorithm NBTree to integrate decision tree algorithm and naïve Bayesian classifier together. Although NBTree has achieved higher accuracies than either naïve Bayesian classification method or decision tree learning algorithm in most datasets, it suffers from the small disjunct problem due to the tree structure. To deal with it, Zheng and Webb (2000) proposed the lazy Bayesian rule learning algorithm (LBR) which lazily induces at classification time a single Bayesian rule for each instance to be classified. The antecedent of a Bayesian rule is a conjunction of conditions in the form of attribute-value pairs, while the consequent is a local naive Bayesian classifier trained on an instance subspace which is used to make the decision for the test unlabelled example. The objective of LBR is to grow the antecedent of a Bayesian rule that ultimately decreases the errors of the local naïve Bayesian classifier in the consequent of the rule. The LBR algorithm adopts a hill-climbing strategy in determining which attribute-value pair should be added to the antecedent at each step. It always makes the choice such that the local Bayesian classifier trained on the reduced subspace can obtains the highest reduction in classification error. Thus, for each candidate (attribute-value) pair, LBR has to train a local Bayesian classifier on the corresponding reduced subspace, and then estimate its error rate. This process requires substantial computational cost whose complexity is quadratic to the number of attributes. It is not desirable, especially for the datasets of high dimensionalities.

This paper proposes a heuristic strategy for attribute-value pair selection, which is based on the meta-information about the performance of the current local naive Bayesian classifier. The attribute-value pair selected partitions the current subspace into two reduced smaller subspaces such that the current local naive Bayesian classifier has significantly different performances on these reduced subspaces. Based on this selection strategy, an algorithm LBR-Meta is designed and implemented. LBR-Meta selects an attribute-value pair and adds it to the antecedent of the current Bayesian rule at each step. This process terminates only when the size of the reduced training subset is smaller than a threshold parameter. This simple criterion guarantees that the final subspace generated by LBR-Meta is quite small, when compared with the one generated by LBR.

This paper is organized as follows: Section 2 introduces naïve Bayesian classifier and local accuracy estimation. Section 3 describes the LBR-Meta algorithm in details. The experimental results are shown in Section 4. Finally, section 5 concludes the whole paper and points out the future work.
2 Naïve Bayesian Classification and Local Accuracy Estimation

Consider a domain where instances are represented as instantiations of a vector \(x = (a_1, a_2, \ldots, a_m) \) of \(m \) nominal variables. Here, each instance \(x \) takes a value \(a_i(x) \) from \(\text{domain}(a_i) \) on each \(a_i \). Further, an example (or instance) \(x \) is also described by a class label \(c(x) \) from \(\text{domain}(c) \). Let \(D = \{(x_i, c(x_i)) | 1 \leq i \leq n\} \) denote the training dataset of size \(n \).

The task of classification is to construct a model (or classifier) from the training set \(D \), which is a function that assigns a class label to a new unlabelled example.

The underlying assumption of naïve Bayesian classifiers (NB) is that attributes are conditionally mutually independent given the class label. According to the Bayes Theorem, the probability of a class label for a given data set, we often need to estimate the prediction accuracy of a classifier. Popular techniques of accuracy estimation include hold-out, cross-validation, and leave-one-out. As naïve Bayesian classifiers have been adopted as base local classifiers in this paper, which is easy to be updated incrementally, leave-one-out can be implemented easily and efficiently for accuracy estimation.

For the naïve Bayesian classifier \(NB(D_1) \) trained on a training set \(D_1 \), leave-one-out method can be used to estimate its accuracy as follows:

\[
\text{ACC}_L(NB(D_1)) = \frac{1}{|D_1|} \sum_{x \in D_1} \left[\frac{|\{x \in D_1 | NB(x, D_1 - \{x\}) = c(x)\}|}{|D_1|} \right]
\]

However, the estimated accuracy above is actually a kind of global accuracy, it is averaged over the whole instance space (or the whole training set). A classifier usually performs differently in different regions (or subspaces). For example,

For a subset \(D_2 \) of \(D_1 \), the local accuracy of \(NB(D_1) \) on \(D_2 \) is estimated by

\[
\text{ACC}_L(NB(D_1), D_2) = \frac{|\{x \in D_2 | NB(x, D_1 - \{x\}) = c(x)\}|}{|D_2|}
\]

It is evident that \(\text{ACC}_L(NB(D_1)) = \text{ACC}_L(NB(D_1), D_1) \). This local accuracy plays an important role in classifier selection, because what we are interested in is actually which classifier performs best in the local subspace surrounding the target test example.

3 LBR-Meta: A heuristic algorithm for lazy Bayesian rules based on meta-information

A Bayesian rule \(r \) takes the form of “antecedent \(r \) \(\rightarrow \) consequent \(r \)”, where the antecedent of \(r \) is a conjunction of attribute-value pairs, and the consequent of \(r \) is a local naïve Bayesian classifier. An instance \(x \) satisfies an attribute-value pair \((a, v) \) if and only if the value of attribute \(a \) on \(x \) equals \(v \) (that is, \(a(x) = v \)).

The instance subspace defined by \(r \) consists of all the instances that satisfy all the attribute-value pairs in \(r \)’s antecedent. The subset of all training examples that satisfy the antecedent of \(r \) is called the local training set of \(r \). The original LBR algorithm requires that the local naïve Bayesian classifier as the consequent should be trained on the local training set of \(r \). This requirement is relaxed by the LBR-Meta algorithm of this paper. It is only required that the training set of the local naïve Bayesian classifier should be no less than the local training set of the Bayesian rule.

The pseudo-code of LBR-Meta algorithm is listed in figure 1, which will be fully explained in this section. For any given unlabelled test example \(x_\text{test} \), LBR-Meta starts from the global Bayesian rule where the antecedent is empty and the consequent is trained on the whole training set \(D \). At each step, an attribute-value pair is selected and added into the antecedent to reduce the current instance subspace, and hence reduce the corresponding local training subset. There are two key problems to be solved in the LBR-Meta algorithm. The first key problem is how to select an attribute-value pair. After an attribute-value is added to the antecedent and the subspace is refined to a further smaller subspace, the second problem appears: how to determine which local classifier is best suited for this reduced subspace. The following two subsections are devoted to the detailed solutions to these two problems.

3.1 A Heuristic Criterion for Attribute-Value Pair Selection

The first problem to be dealt with is: which attribute-value pair should be selected to reduce the current instance subspace? The original LBR algorithm makes the decision so that the local classifier trained on the reduced subspace has the lowest estimated error rate. With this selection criterion, one classifier has to be induced for each attribute-value pair, which leads to high computational overhead. In order to improve computational efficiency, this paper takes a heuristic way: it selects the attribute-value pair that can differentiate the performance of the current local classifier on the current subspace. The details go as follows:
Let r be the current Bayesian rule, D_{local} be the current local training set, and $NB(D_{\text{current}})$ be the current local naïve Bayesian classifier associated with r. As stated above, this local naïve Bayesian classifier is trained on D_{current} which does not necessarily equal to D_{local}. However, it is required that $D_{\text{local}}=D_{\text{current}}$. A boolean attribute a_{meta} is appended to each training example, whose value denotes whether or not the current local naïve Bayesian classifier $NB(D_{\text{current}})$ can classify the corresponding training example correctly with leave-one-out method. Put it formally, for each $x \in D_{\text{local}}$:

$$c_{\text{meta}}(x) = \begin{cases} \text{true} & \text{if } NB(x, D_{\text{current}} \setminus \{x\}) = c(x); \\ \text{false} & \text{otherwise.} \end{cases}$$

According to the values of c_{meta}, the current local training set D_{local} is partitioned into two subsets:

$$D_{\text{local}}_{\text{true}} = \{x \in D_{\text{local}} | c_{\text{meta}}(x) = \text{true}\},$$

and

$$D_{\text{local}}_{\text{false}} = \{x \in D_{\text{local}} | c_{\text{meta}}(x) = \text{false}\}. $$

Furthermore, each attribute-value pair (a, v) can also partition the current local training set D_{local} into two subsets:

$$D_{\text{local}}_{a} = \{x \in \text{train} | a(x) = v\}$$

and

$$D_{\text{local}}_{\neg a} = \{x \in \text{train} | a(x) \neq v\}.$$

The subset (D_{local}_{a}) consists of the training examples in D_{local} that take value v on attribute a; while $(D_{\text{local}}_{\neg a})$ consists of the training examples in D_{local} that do not take value v on a. The current local naïve Bayesian classifier may have different performance (or accuracies) on these two subsets. Its local accuracy on (D_{local}_{a}), $i \in \{0, 1\}$, is estimated by

$$ACC_i(NB(D_{\text{current}}), (D_{\text{local}}_{a})) = \frac{|(D_{\text{local}}_{a})_{\text{true}}|}{|(D_{\text{local}}_{a})|},$$

where $(D_{\text{local}}_{a})_{\text{true}} = (D_{\text{local}}) \cap (D_{\text{local}}_{a})_{\text{true}}$.

The idea used for heuristic attribute-value pair selection is: the more the difference between the local accuracies of these two subsets is, the more likely can we expect to get good performance by zooming the local naïve Bayesian classifier into the corresponding subspace of (D_{local}). Using information gain, the goodness of an attribute pair (a, v) is measured by LBR-Meta as follows:

$$\text{Goodness}(a, v) = \text{Info}(\{(D_{\text{local}})_{\text{true}} | (D_{\text{local}})_{\text{false}}\}) + \sum_{i=0}^{1} \frac{|(D_{\text{local}})_{a}|}{|D_{\text{local}}|} \text{Info}(\{(D_{\text{local}})_{a, true} | (D_{\text{local}})_{a, false}\}) - \text{Info}(n_1, n_2) = \log \frac{n_1}{n_1 + n_2} - \log \frac{n_2}{n_1 + n_2}.$$

The information gain has also been used for attribute selection in a famous decision tree algorithm ID3 (Quinlan 1986, Quinlan 1993). The difference is that it is concerned about the Boolean attribute a_{meta}, while it is concerned about the class attribute c in ID3.

Comparison with LBR algorithm: The LBR algorithm tries to add each candidate attribute-value pair to the antecedent of the current Bayesian rule, then reduces the local training set, and then trains a local classifier accordingly. The total time spent is $O(|A| \times |A| \times |D_{\text{local}}|)$.

The LBR-Meta algorithm calculates the goodness of each candidate attribute-value pair. The time needed in total is $O(|A| \times |D_{\text{local}}|)$.

3.2 Local Naïve Bayesian Classifier Selection

After an attribute-value pair has been selected and added to the antecedent of the rule, the current local subspace is reduced to a further smaller subspace. The current local training set D_{local} is also reduced to a smaller local training subset D_{red}. The aim of local classifier selection is to select the local classifier that has the highest local accuracy on the reduced subspace. That is measured on the smaller local training set D_{red}.

LBR-Meta uses the variable LocalClassifiers to represent the set of all qualified local naïve Bayesian classifiers that have already been generated. The global naïve Bayesian classifier is assumed to be qualified and added into LocalClassifiers (line 2 in figure 1). Once a local naïve Bayesian classifier SubLocalNB is trained on the reduced training subset D_{red} at each step, it is compared with all the qualified local classifiers in LocalClassifiers. If SubLocalNB has the highest estimated local accuracy on D_{red}, it is qualified and added into LocalClassifiers (lines 17–18 in figure 1); otherwise, SubLocalNB will be discarded.

- If D_{red} contains too few training examples, that is, the size of D_{red} is less than a threshold Thresh (line 9 in figure 1), the local accuracy estimated on D_{red} can not provide reliable information about the accuracy on the corresponding subspace, and thus the current local naïve Bayesian classifier CurrentLocalNB is used directly to make the decision for x_{test}. Note: the default value of Thresh is set to 5.

- If the size of D_{red} is larger than or equal to the threshold Thresh, we first estimate the local accuracy on D_{red} for each local classifier in LocalClassifiers (lines 10–12 in figure 1). The one with the highest estimated local accuracy is selected and denoted by BestSupNB with the estimated local accuracy stored in the variable BestSupAcc (lines 13–14 in figure 1). Then we compare the size of D_{red} with another parameter MinNumObj which should be set greater than Thresh. (Note that MinNumObj has default value 15 in this paper):

 A. If the size of D_{red} is less than MinNumObj, the decision made by the local classifier BestSupNB is returned as the result (line 15 in figure 1).

 B. If D_{red} contains enough training examples to train a local naïve Bayesian classifier SubLocalNB (line 16 in figure 1), or in another words, the size of D_{red} is no less than MinNumObj (line 15 in figure 1), the classifier SubLocalNB will compete with other local classifiers previously generated for the domination of the subspace corresponding to the training subset D_{red}. If SubLocalNB is more accurate on D_{red} than BestSupNB, the classifier SubLocalNB is added into LocalClassifiers, and the CurrentLocalNB is set to be SubLocalNB (lines 17–19 in figure 1); otherwise, the CurrentLocalNB is set to be BestSupAcc (lines 20–21 in figure 1).
LBR-Meta

Input:
A: a set of attributes
D: a set of training examples described using A and class attribute c
x_{test}: a test example described using A

Output: a predicted class for x

1. CurrentLocalNB := NB(D);
2. Add NB(D) into the set of local classifiers LocalClassifiers;
3. D_{local} := D; A_{local} := \{a \in A \mid a(x_{test}) \text{ is not missing}\};
4. FOR each example x in D DO
 \(c_{meta}(x) := \begin{cases}
 \text{true, if } NB(x, D - \{x\}) = c(x) \\
 \text{false, if } NB(x, D - \{x\}) \neq c(x)
 \end{cases} \); ENDFOR
5. WHILE (A_{local} is not empty) DO
6. Calculate Goodness(a, a(x_{test})) for each attribute a \in A_{local}, according to the equation();
7. att:= arg max Goodness(a, a(x_{test}));
8. D_{red} := \{x \in D_{local} | att(x) = att(x_{test})\}; A_{local} := A_{local} - \{att\};
9. IF |D_{red}| < Thresh THEN return CurrentLocalNB(x_{test}); ENDIF
10. FOR each local classifier NB(D_i) in LocalClassifiers DO
11. estimate its local accuracy on D_{red}: ACC_i(NB(D_i), D_{red});
12. ENDFOR
13. BestSupNB := \arg \max_{NB(D_i) \in LocalClassifiers} ACC_i(NB(D_i), D_{red});
14. BestSupAcc := the estimated local accuracy of BestSupNB on D_{red};
15. IF |D_{red}| < MinObjNum THEN return BestSupNB(x_{test}); ENDIF
16. SubLocalNB := NB(D_{sub});
17. IF ACC_i(SubLocalNB) ≥ BestSupAcc THEN
18. add SubLocalNB into LocalClassifiers;
19. CurrentLocalNB := SubLocalNB;
20. ELSE
21. CurrentLocalNB := BestSupNB;
22. ENDIF
23. \(c_{meta}(x) := \begin{cases}
 \text{true, if } NB(x, Tr - \{x\}) = c(x) \\
 \text{false, if } NB(x, Tr - \{x\}) \neq c(x)
 \end{cases} \) for each x in D_{red} where NB(Tr)=CurrentLocalNB;
24. D_{local} := D_{red};
25. ENDWHILE

Figure 1. The LBR-Meta Algorithm
Finally, due to the fact that the current local na"ive Bayesian classifier has possibly been changed, we need to update the attribute values of c_{meta} for all training examples in the reduced subspace (line 23 in figure 1).

3.3 Analysis of LBR-Meta

LBR uses a statistical sign-test to control tradeoff between the decreasing error by removing harmful attribute-value pair and increasing error as a result of reducing the accuracy of the probability estimations of the local na"ive Bayesian classifier due to decreases in the size of the available training set. In addition, this statistical sign-test is also used as the termination condition for the repetitive process. However, the strategies adopted by LBR-Meta are different from LBR, which are described as follows.

Firstly, even if the accuracy of the probability estimations of the local na"ive Bayesian classifier is decreasing with a smaller training set, it has already been reflected in its estimated local accuracy. That is to say, it is expected that the classifier should get low estimated accuracy if the probability estimations inside it are not reliable. Or if the estimated accuracy of the classifier is high, it means that the accuracy of the inside probability estimations is acceptable.

Secondly, LBR algorithm tries to add one attribute-value pair to the antecedent at each step. This process is repeated until no attribute-value pair could lead to a local na"ive Bayesian classifier with statistically higher accuracy on the reduced subspace. However, in LBR-Meta, even if the attribute-value pair that is selected cannot lead to a qualified local na"ive Bayesian classifier (that is, the classifier trained on the reduced training subset has lower accuracy), the process is not terminated. This strategy does not suffer from local maxima. The final subspace produced by LBR-Meta for a given test example is much smaller that that produce by LBR.

In spite of the fact that the individual attribute-value pair selected by LBR algorithm may be better than that selected by LBR-Meta, the above two strategies taken by LBR-Meta have compensated for this shortcoming in some degree. It will be shown in the experimental part that LBR-Meta has also yielded high accuracies comparable with LBR.

Furthermore, our actual objective is to maximize the local accuracy at the point of the test example, which is usually approximately by the accuracy on a subspace around the test example. There is also a tradeoff between variance and bias. If the subspace is too large, the accuracy estimated may differ significantly from the accuracy at the point of the test example. On the contrary, if the subspace is too small, the accuracy estimated is not reliable (with large variance).

4 Experimental Results

To evaluate the performance of the proposed LBR-Meta algorithm, we compare it with two other closely related algorithms: the na"ive Bayesian classifier (NB), and the lazy Bayesina rule algorithm (LBR). Twenty-three data sets from UCI machine learning repository are used for the comparison, with detailed information listed in table 1. The datasets are drawn randomly, with the requirement that each dataset should contain at least 300 examples. The numbers of attributes vary from 8 to 36, and the numbers of examples from 303 to 12960. Ten-fold cross validation is conducted on each data set, such that each fold has at lest 30 examples. For LBR can only deal with discrete attributes, the continuous attributes are discretized by an entropy-based discretization algorithm (Fayyad & Irani 1993) as a preprocess.

The error rates of these algorithms over all datasets are listed in table 2. The final row shows the mean error rates across all the datasets. Among the three algorithms, LBR-Meta gets the best result, which is slightly better than LBR, and greatly better than NB. When we look at individual datasets, it is found that LBR-Meta has lower error rates than LBR on 10 datasets and higher than LBR on 11 datasets.

The mean error rate is only a naive measurement of a classification method over these datasets. To evaluate the relative error rate reduction, we present a new measurement called the relative difference ($rdiff$). For a given dataset, assume e_1 be the error rate of the first method, and e_2 be the error rate of the second method. The relative difference from e_2 to e_1 is defined as:

$$rdiff(e_2, e_1) = \frac{e_2 - e_1}{\max\{e_1, e_2\}}$$

When both e_1 and e_2 are zero, the value is defined to be 0. It can be seen that if e_2 equals to e_1, the relative difference is zero; if e_2 is larger than e_1, the relative difference is positive; and if e_2 is less than e_1, the relative difference is negative. Therefore, the smaller the relative difference
from \(e_2 \) to \(e_1 \) is, the better is the second method relatively than the first method on the dataset. Furthermore, it is evident from the definition that
\[
\text{rdiff}(e_2, e_1) = -\text{rdiff}(e_1, e_2).
\]
The relative difference may be better than the error rate ratio used by Zheng & Webb (2000), in that the error rate ratio will lead to an infinite value when some error rate appears (or approaches) zero, and in that the \(\text{rdiff} \) value lies in the interval \([-1, 1]\), while the error rate ratio lies in the interval \((0, \infty]\). The last row in Table 2 gives out the mean relative difference of each algorithm to LBR-Meta over all datasets. From the fact that the mean relative difference from NB to LBR-Meta is 25.5%, conclusion can be drawn that LBR-Meta has substantially reduced the error rates of NB.

In addition, the one-tailed pairwise \(t \)-test (with significance level set at 5%) shows that LBR-Meta wins on 3 datasets (Chess, Nursery, and Tic-Tac-Toe), and loses on 1 dataset (Waveform-21) when compared with LBR. LBR-Meta also wins significantly on 11 datasets and loses on 0 when compared with NB. When comparing LBR with NB, we find that LBR significantly wins on 13 datasets and loses on 0 datasets.

These results have shown that the algorithm LBR-Meta is comparable to LBR on the experimental datasets, but the computational cost of LBR-Meta is far less than that of LBR, which is shown next.

<table>
<thead>
<tr>
<th>LBRMeta</th>
<th>LBR</th>
<th>Runtime Ratio of LBR to LBR-Meta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian</td>
<td>0.5922</td>
<td>0.4798</td>
</tr>
<tr>
<td>Breast</td>
<td>0.2986</td>
<td>0.1955</td>
</tr>
<tr>
<td>Chess</td>
<td>28.9234</td>
<td>215.403</td>
</tr>
<tr>
<td>Cleve</td>
<td>0.0764</td>
<td>0.0627</td>
</tr>
<tr>
<td>Crx</td>
<td>0.6391</td>
<td>0.5564</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.2422</td>
<td>0.1235</td>
</tr>
<tr>
<td>German</td>
<td>1.0595</td>
<td>1.1486</td>
</tr>
<tr>
<td>Horse-Colic</td>
<td>0.1124</td>
<td>0.2388</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>27.9467</td>
<td>36.6264</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>0.250</td>
<td>0.9625</td>
</tr>
<tr>
<td>Mushroom</td>
<td>86.9904</td>
<td>188.848</td>
</tr>
<tr>
<td>Nursery</td>
<td>69.501</td>
<td>71.2436</td>
</tr>
<tr>
<td>Pendigits</td>
<td>62.7794</td>
<td>183.488</td>
</tr>
<tr>
<td>Pima</td>
<td>0.2499</td>
<td>0.1173</td>
</tr>
<tr>
<td>Satimage</td>
<td>46.1528</td>
<td>193.495</td>
</tr>
<tr>
<td>Segment</td>
<td>5.8579</td>
<td>10.8002</td>
</tr>
<tr>
<td>Shuttle-Small</td>
<td>16.386</td>
<td>18.2967</td>
</tr>
<tr>
<td>Sick</td>
<td>24.9702</td>
<td>49.5563</td>
</tr>
<tr>
<td>Solar</td>
<td>0.1062</td>
<td>0.1345</td>
</tr>
<tr>
<td>Soybean-Large</td>
<td>1.4609</td>
<td>15.2015</td>
</tr>
<tr>
<td>Tic-Tac-Toe</td>
<td>0.4281</td>
<td>0.4157</td>
</tr>
<tr>
<td>Vote</td>
<td>0.2048</td>
<td>0.3374</td>
</tr>
<tr>
<td>Waveform-21</td>
<td>17.5639</td>
<td>32.7342</td>
</tr>
</tbody>
</table>

Table 3: Runtime Comparison (in seconds)

Furthermore, we use a scatter plot in Figure 2 to check the relationship between the runtime ratio of LBR to LBR-meta and the number of attributes. In Figure 2, each dot represents a dataset whose \(x \) coordination is the
number of attributes, and whose \(y \) coordination is the runtime ratio of LBR to LBR-Meta. A dot above the line \(y=1 \) means that the algorithm LBR-Meta is faster than LBR on the corresponding dataset. The higher is the \(y \) coordination of a dot, the faster and the better LBR-Meta is. Clearly, it can be observed from the figure that LBR-Meta runs faster than LBR for all the datasets with more than 15 attributes, and that LBR-Meta is much faster than LBR with increasing number of attributes in the datasets.

Finally, an ensemble technique, Bagging (Breiman 1996), is applied to LBR-Meta, LBR-Bag, and NB to check its effect in reducing error rate. As has been pointed out by Bauer & Kohavi (1999), naive Bayesian classifiers are not sensitive to the small change caused by resampling or replication of training examples. However, due to the facts that the final naive Bayesian classifiers generated by LBR-Meta and LBR are trained on a local training subset, and that the small change may change the attribute-value selected in the repetitive process, it is conjectured that LBR-Meta and LBR be more sensitive to Bagging. The experimental results are shown in Table 4, where the ensemble size is set at 10.

<table>
<thead>
<tr>
<th></th>
<th>LBRMeta-Bag</th>
<th>LBR-Bag</th>
<th>NB-Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian</td>
<td>14.1%</td>
<td>14.5%</td>
<td>14.3%</td>
</tr>
<tr>
<td>Breast</td>
<td>3.6%</td>
<td>2.9%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Chess</td>
<td>0.8%</td>
<td>1.7%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Cleve</td>
<td>16.5%</td>
<td>16.5%</td>
<td>16.5%</td>
</tr>
<tr>
<td>Crx</td>
<td>13.8%</td>
<td>13.9%</td>
<td>14.5%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>25.1%</td>
<td>24.6%</td>
<td>25.0%</td>
</tr>
<tr>
<td>German</td>
<td>26.2%</td>
<td>24.8%</td>
<td>25.0%</td>
</tr>
<tr>
<td>Horse-Colic</td>
<td>17.1%</td>
<td>17.1%</td>
<td>20.9%</td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>1.0%</td>
<td>1.1%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>10.0%</td>
<td>9.4%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Mushroom</td>
<td>0%</td>
<td>0%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Nursery</td>
<td>1.2%</td>
<td>2.1%</td>
<td>9.8%</td>
</tr>
<tr>
<td>Pendigits</td>
<td>3.2%</td>
<td>2.9%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Pima</td>
<td>23.3%</td>
<td>24.2%</td>
<td>24.6%</td>
</tr>
<tr>
<td>Satimage</td>
<td>12.0%</td>
<td>12.5%</td>
<td>17.8%</td>
</tr>
<tr>
<td>Segment</td>
<td>5.5%</td>
<td>4.9%</td>
<td>8.6%</td>
</tr>
<tr>
<td>Shuttle-Small</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Sick</td>
<td>2.2%</td>
<td>2.6%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Solar</td>
<td>28.8%</td>
<td>28.2%</td>
<td>30.1%</td>
</tr>
<tr>
<td>Soybean-Large</td>
<td>6.7%</td>
<td>6.7%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Tic-Tac-Toe</td>
<td>6.6%</td>
<td>10.1%</td>
<td>29.8%</td>
</tr>
<tr>
<td>Vote</td>
<td>5.3%</td>
<td>4.4%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Waveform-21</td>
<td>16.8%</td>
<td>16.1%</td>
<td>18.9%</td>
</tr>
</tbody>
</table>

Table 4: Bagging on LBR and LBR-Meta

From the results listed in Table 4, it can be seen that Bagging technique totally has no effect on naive Bayesian (NB) method, as NB-Bag has almost the same mean error rate as NB. By applying Bagging to LBR-Meta, the resulting LBRMeta-Bag gets 20 wins, 1 draws and only 2 loses when compared with the base LBR-Meta algorithm, while the mean error rate decreases from 11.27% to 10.43%. Applying Bagging to LBR has similar effects too.

5 Conclusion and Future Work

This paper proposes an algorithm LBR-Meta which makes use of a heuristic criterion for attribute-value pair selection in the lazy construction of a Bayesian rule. This criterion can be calculated in linear time with respect to the number of attributes, which has greatly improved the efficiency of the resulting algorithm. Experimental results have also shown that this algorithm also achieves high accuracy comparable to the classical LBR algorithm.

The future work about LBR-Meta is to enhance it with the ability to handle continuous attributes directly. This may be done as follows: Given a continuous attribute, the information gain with respect to the \(c_{meta} \) attribute is calculated for each possible split point. The best split point with the highest information gain value is selected, which can partition the current subspace into two reduced smaller subspaces. This continuous attribute together with the best split point competes with all the other attributes in the attribute-value pair selection. This straightforward process can endows the LBR-Meta with continuous-attribute handling ability.

Acknowledgements
This work was funded in part by National Natural Science Foundation of China under grant number 60503025

6 References

