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Abstract

Automatic speech recognition (ASR) performs well under re-
stricted conditions, but performance degrades in noisy envi-
ronments. Audio-Visual Speech Recognition (AVSR) combats
this by incorporating a visual signal into the recognition. This
paper briefly reviews the contribution of psycholinguistics to
this endeavour and the recent advances in machine AVSR. An
important first step in AVSR is that of feature extraction from
the mouth region and a technique developed by the authors
is breifly presented. This paper examines examine how useful
this extraction technique in combination with several integra-
tion arhitectures is at the given task, demonstrates that vision
does infact assist speech recognition when used in a linguisti-
cally guided fashion, and gives insight remaining issues.
Keywords: Audio-Visual Speech Recogition, Neural
Networks, Sensor Fusion

1 Introduction

The major aim of this project is to improve the per-
formance of a standard automatic speech recognition
(ASR) system by using information from the tradi-
tional, auditory signal as well as a visual signal. In
effect, the goal of this research is to enable the com-
puter to “lip-read”. The motivation for this endeav-
our stems from the acknowledgement that although
current, commercial ASR systems have been touted
with word recognition rates of 98-99%, these rates
are usually achieved with one speaker, a close, head-
mounted microphone, minimal background noise, and
considerable dependence on word prediction mod-
els. In a noisy environment, or where wearing a
head microphone is not practical the recognition
rates of such systems degrade [Bregler et al., 1993].
For a robust recognition solution, additional infor-
mation is required - here we focus on the provi-
sion of this information in the form of a visual im-
age, i.e. audio-visual speech recognition (AVSR).
This project is also motivated by the fact that psy-
cholinguistic research has found that visual cues play
an important role in speech perception by humans
[Dodd and Campbell, 1987]. Therefore, the integra-
tion of auditory and visual signals to improve speech
recognition is not only of benefit to automatic speech
recognition systems but it also has psychological plau-
sibility. Thus, a secondary aim is to better under-
stand the role of visual cues in human speech recog-
nition.

An important first step in AVSR is the the extrac-
tion of lip features that (may) contribute to visual
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speech recognition. These features seem likely to in-
clude width, height, and general mouth shape, as well
as dynamic features such as velocity and inter-frame
motion. In this paper, we present a novel pixel-based
approach to lip feature extraction that, using our AV
database, outperforms other techniques in terms of
correct feature identification. This techniques is then
used as the visual basis of AVSR experiments. We
first outline the context of this work, AVSR - both
human and machine, the feature extraction technique
is then described, and finally a series of AVSR exper-
iments using nerual networks are discussed.

2 Background

In AVSR, knowledge from diverse areas needs to be
brought together to fully understand the problem at
hand. The first two parts of this section give a brief
overview of psycholinguistic research in the area and
the current progress of machine AVSR!. The final
part places this current work into the broader aspect
of the project that we are undertaking, namely, low-
cost AVSR in natural conditions.

2.1 Psycholinguistic Research

The knowledge of both the psychological and linguis-
tic aspects of AVSR by humans are valuable tools for
exploration in this rapidly developing field. The way
in which humans perceive speech, both acoustically
and visually, may not be the best or most efficient in
engineering terms, but such work can enlighten how
one might start tackling the problem. Thus, instead
of blindly attempting to get a machine to recognise
speech visually, the work from psycholinguistics can
be included to produce a potentially more elegant and
refined solution.

One reason why humans may benefit from a vi-
sual signal is because our various speech articu-
lators are visible. Lips, teeth, and tongue have
been identified as the primary indicators for vi-
sual speech[Robert-Ribes et al., 1996], however, the
cheeks, chin and nose are also very useful as secondary
indicators. To an extent, the entire facial expression
is used and because more than just the lips are used,
the term speechreading has evolved to take the place
of ‘lip-reading’.

One of the most important findings in this area
is that of the viseme. A viseme is the virtual sound
attributed to a specific mouth (or face) shape. The
viseme is analogous to the phoneme in the auditory
domain, however, there does not exist a one-to-one
mapping between the two. Phonemes are the dis-
tinctive sound segments that contrast or distinguish
words, for example, /p/ as in pit and /b/ in bit
[Fromkin et al., 1996].

For a comprehensive review the reader is directed to
[Stork and Hennecke, 1996] and [Dodd and Campbell, 1987]




Table 1: Consonant viseme classes

Label  Place of Articulation Phoneme(s)
LAB labial /p,b,m/

LDF labiodental fricatives /f,v

IDF interdental fricatives /th,dh/

LSH lingual stops and h /d;tn,gkngh/
ALF alveolar fricatives /8,2

LIL - Y

RRR - /r/

PAL palatal veolars /sh,zh/

WWW - /w/

Experiments have found that the human percep-
tion of consonants systematically group in the pres-
ence of noise [Summerfield, 1987]. Under a signal-
to-noise ratio of -6dB, humans are only able to au-
dibly distinguish consonants on the basis of voicing
(voiced/voiceless) and nasality. In contrast, visual
discrimination doesn’t degrade with increasing acous-
tic noise and hierarchical clustering of human ex-
perimental results have found that, from the stand-
point of confusion and noise degradation, visemes
actually form a complementary set to phonemes
[Walden et al., 1977]. Table 1 shows the 9 distinct,
humanly perceivable viseme classes, as well as their
common place of articulations as noted by Cohen,
Walker, and Massaro[Cohen et al., 1996]. A further
distinction can also be made within the LSH class,
which involves a split between the alveolar stops and
nasal, /t,d,n/, and the velar/glottal stops and nasal,
/gk,ng,h/[Goldschen et al., 1996].

2.2 Machine AVSR

Machine AVSR must not only deal with the recogni-
tion of the auditory signal, as in ASR, but it must
also decide on a number of important design ques-
tions concerning visual processing. Some of the ques-
tions, pointed out by Hennecke, Stork, and Venkatesh
Prasad[Hennecke et al., 1996], are outlined below.

1. How will the face and and mouth region be
found?

2. Which visual features to extract from the image?
3. How are auditory and visual channels integrated?

4. What type of learning and/or recognition is
used?

Unfortunately, there is still no consensus on the
answers to any of these questions. Many different
approaches have been developed for each, of which we
can only mentioned the general aspects of the main
techniques.

There are some AVSR systems that processes both
the audio and visual channels, and complete recog-
nition in near real-time. These types of systems
need to be able to initially locate the face from a
cluttered background, a research area in itself, and
then extract the mouth region for further analy-
sis. A prime example of this is the Interactive Sys-
tems Laboratory complete multi-modal human com-
puter interface, of which part is a movement-invariant
AVSR system [Duchnowski et al., 1995].In this case,
as it is with many other systems, the face is found
with colour. This simple, but effective, technique
works because the colour of human skin (normalised
for brightness/white levels) varies little between in-
dividuals, and even races [Hunke and Waibel, 1994,
Yang and Waibel, 1996]. Once the face is located
it is necessary to pinpoint the mouth within the

face. This usually achieved using either a triangu-
lation with the eyes (or nose) which are more eas-
ily located [Stiefelhagen et al., 1997], or by finding
an area with high edge-content in the lower half
of the face region [Hennecke et al., 1995]. Given
the large amountof research already carried out
in face locating/recognition [Chelappa et al., 1995],
many researches in AVSR opt to skip the stage and
start working with pre-cropped mouth images (eg.
[Gray et al., 1997], [Movellan, 1995]). This allows for
a relatively quicker progression for researchers begin-
ning work in this area and this is the approach taken
here.

Once the mouth region is found, either auto-
matically or by hand, useful lip features must be
extracted that can be used visual or audio-visual
speech recognition. It is at this stage where re-
search groups begin to differ greatly in the extrac-
tion techniques applied. Some prefer to use low-level,
pixel based approaches with minimal alteration to
the original image (eg. [Movellan and Mineiro, 1998]
or [Meier et al., 1999]), whilst others insist that
a high-level,model approach is the most efficient
way to proceed (eg. Hennecke et al., 1996] or
[Leuttin and Dupont, 1998]). The approach taken
here is somewhere in the middle of this continuum;
feature points are specifically chosen although no
model is constructed. Section 3 elaborates further
on this stage of AVSR.

A researcher’s answers to questions 3 and 4 are
intimately intertwined as the type of recognition al-
gorithm used heavily influences the type, and method
of integration used. The recognition problem here is
basically a pattern matching problem and many of
the recognition techniques from traditional ASR can
be used, with modifications, for visual recognition of
visemes. Thus, many researchers are biased in the
choice of recognition and integration algorithms by
what type of ASR system they may have been devel-
oping previously and therefore see AVSR as merely
an extension to their already powerful ASR system
(eg. [Meier et al., 1999]). This is not a problem un-
less the researcher does not take into account the spe-
cial characteristics of the visual forms of phonemes,
that is, what is practical and what is not.

The two most widely used recognition tech-
niques are the Neural Network (NN) and the Hid-
den Markov Model (HMM) [Hennecke et al., 1996].
HMMs [Charniak, 1993] have the distinct advantage
that they are inherently rate invariant and this is
especially important for speaker independent ASR,
where different speakers speak at different rates. An-
other important factor of HMMs concerning recogni-
tion, is that there are efficient algorithms for train-
ing and recognition, which is hugely beneficial when
dealing with the large amounts of visual data that
accumulates, especially if recognition is to be done in
real-time. NNs, on the other hand, are often criti-
cised for their slow trainability and variance due to
rate. However, they do have the empowering ability of
generalisabilty, given large enough training sets, and,
moreover, they do not make any assumptions about
the underlying data. Furthermore, they demonstrate
gracefull degradation in the presence of noise

The two most closely followed psychologically de-
rived models of integration are the direct integration
(DI) and seperate identification (SI) models. In the
DI model, feature vectors of the acoustic and visual
signals can be, in the simplest form, concatenated
together, and then this vector can be used as input
into the HMM [Adjoudani and Benoit, 1996] or NN
[Meier et al., 1999]. It is obvious that when following
the DI model integration occurs automatically, and
it is up to the recognition engine to decide upon
the important features. However, under a SI model,



integration can become somewhat trickier. The
simplest case is when the outputs of separate NNs
are feed into another NN that effectively performs
the integration task. In the case of HMMSs the
resulting log-likelihoods are combined in some way
to produce a final estimate. The most common,
and simplest way to integrate the log-likelihoods
is to combined them in such a way to maximise
their cross-product. Late integration (SI) is an
evolving area in AVSR and is a difficult issue to
contend with, this is because fusing the two signals
can lead to what has become known as catastrophic
fusion [Movellan and Mineiro, 1998]. This is when
the accuracy of the fused outcome is less than
theaccuracy of both individual systems. Much work
is underway, for both HMMs and NN, in trying to
automatically bias one signal, when conditions are
adverse for the other [Movellan and Mineiro, 1998,
Adjoudani and Benoit, 1996, Meier et al., 1996,
Massaro and Stork, 1998].

2.3 The Broader Aspect

Many of the AVSR systems that have been tested are
often restricted to operate in well-defined experimen-
tal conditions, for example, controlled lighting condi-
tions, and minimal acoustic and visual noise levels.
Performance of these systems in adverse conditions is
usually tested by artificially increasing the noise lev-
els [Movellan and Mineiro, 1998]. One of the goals of
this project is to train and test the AVSR system with
naturally degraded input, with an unknown amount
of noise, such that the system should perform well in
all conditions. This includes the development of a ro-
bust visual system for finding lip features, which is the
focus of section 3. Figure 1 is a schematic representa-
tion of the architecture of the AVSR system that we
are developing. Using a low-cost, off-the-shelf (OTS)
integrated audio-visual capture device?, the audio
and visual signals are passed through preprocessing
stages where feature vectors are built up. Currently
this stage is completed off-line, but there is progress
being made towards real-time feature extraction. The
feature vectors can be further reduced in sized by used
a data reduction technique, for example principal
components analysis (PCA) or its generalisation, sin-
gular valued decomposition (SVD) [Gray et al., 1997,
Schifferdecker, 1994]. This is a common trick for over-
coming the large amounts of for visual processing,
which can improve and speed up training when us-
ing NNs. The feature vectors are then passed to a
classifier, in this case an NN, where the phoneme
(viseme) is identified. This is a stage where this sys-
tem differs from others, in that we are recognising the
sub-word units (phonemes) rather than attempting
to identify whole words [Movellan and Mineiro, 1998,
Rao and Mersereau, 1994], where gestures and rela-
tions are more complex and thus less complexity
should be involved. Integration could possible pro-
ceed along any of the dotted lines indicated in Figure
1 or at the end, after each subsystem has made its
classification.

As one of the motivations for this project is AVSR
in natural conditions, it was necessary to collect our
own data set, that potentially had noise in both
acoustic and visual sources. Furthermore, of the
datasets that do exist [Web, 2000, Movellan, 1995],
they are usually recorded using highly specific record-
ing equipment and another aspect of this project is
the use of low-cost, OTS equipment. This data set
consisted of words that expressed most of the phonetic
contexts of the different phonemes found in (Aus-
tralian) English, eg. /p/ - pot, apple, cop. These

?In this case, a Philips VestaPro (PCVC680K).

audio-visual capture device

PHONEME

Figure 1: Architecture for AVSR system. A dotted
line indicates possible early integration path.

Table 2: Targeted phonemes and words

Targeted | Position

Phoneme | start middle final
/p/ | pear/pea  kappa/apple  mop/top
/b/ bear /bag abba/rabbit mob/cab
/m/ mare/moon hammer tom/ham
/t/ tear/tin matter /butter  pot/feet
/d/ dare/desk  adder/rudder  pod/bed
/n/ nair/knee  anna/winner don/bun
/k/ care/kite hacker/wacky  hock/book
/g/ gair/go dagger/logging bog/bag
/y/ banger/singer  bang/song

word sets were spoken by three people, 2 male and 1
female, that varied greatly in appearance. In the fol-
lowing sections, this database has been used to test
the algorithms explained. Although only a subset of
the phonemes have been used for the recognition ex-
periments (see Table 2).

3 Feature Extraction

3.1 Visual Features

As mentioned, the accurate extraction of lip features
for recognition is very important first step in AVSR.
Moreover, the consistency of the extraction is very
important if it is to be used in a variety of condi-
tions and people. According to Bregler, Manke, Hild,
and Waibel [Bregler et al., 1993], broadly speaking
there exist two different schools of thought when it
comes to visual processing. At one extreme, there
are those who believe that the feature extraction
stage should reduce the the visual input to the least
amount of hand-crafted features as possible, such as
deformable templates [Hennecke et al., 1994]. This
type of approach has the advantage that the num-
ber of visual inputs are drastically reduced - poten-
tial speeding up subsequent processesing and reducing
the variability and increasing generalisability. How-
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Figure 2: a) Example of red exclusion, and b) Visual
features used for recognition.

ever, this approach has been heavily criticised as it
can be time consuming in fitting a model to each
frame [Rao and Mersereau, 1994] and, most impor-
tantly, the model may exclude linguistically relevant
information [Gray et al., 1997, Bregler et al., 1993].
The opponents of this approach believe that only
minimal processing should be applied to the found
mouth image, so as to the amount of information
lost due to any transformation. For example, Gray
et al. [Gray et al., 1997] found that simply us-
ing the difference between the current and previ-
ous frames produce results that were better than
using PCA. However, in this approach the feature
vector is equal to the size of the image (40x60 in
most cases), which is potentially orders of magni-
tudes larger than a model based approach. This
can potentially become a problem depending on the
choice of recognition system and training regime,
however, successful systems have been developed
using both HMMs and NNs using this approach
[Movellan and Mineiro, 1998, Meier et al., 1999].

In a previous paper it was demonstrated that many
of the current pixel-based techniques do not ade-
quately identify the lip corners, or even the lip region
in some cases [Lewis and Powers, 2000]. This led to
us to define our own lip feature extraction technique.
This novel technique, rather than looking at the red
colour spectrum, focuses on the green and blue colour
values. The rationale is that as the face, including
lips, are predominantly red, such that any contrast
that may develop would be found in the green or blue
colour range, red exclusion. Thus, after convolving
with a Gaussian filter to remove any noise, the green
and blue colours are combined as in,

log (%) <p (1)

Using the log scale further enhances the contrast be-
tween distinctive areas, and by varying the threshold
B the mouth area and the lip features can easily be
identified on all three different subjects. Figure 2a is
an example of red exclusion on one of the subjects and
2b is example of visual features used for recognition.

3.2 Acoustic Features

According to Schafer and Rabiner, the choice of the
representation of the (acoustic) speech signal is crit-
ical [Schafer and Rabiner, 1990]. Many different rep-
resentations of speech have been developed, includ-
ing simple waveform codings, time and frequency do-
main techniques, linear predictive coding, and nonlin-
ear or homomorphic representations. Here, we focus
on the homomorphic representations, especially the
mel-cepstrum representation.

The mel-frequency scale is defined as a linear fre-
quency spacing below 1000 Hz and a logarithmic spac-
ing above 1000 Hz [Davis and Mermelstein, 1990].
This representation is preferred by many in the speech
community as it more closely resembles the subjective
human perception of sinewave pitch [Brookes, 2000,

Rabiner and Juang, 1993]. A compact representation
of the phonetically important features of the speech
signal can be encoded by a set of mel-cepstrum coeffi-
cients, with the cepstral coefficients being the Fourier
transform representation of the log magnitude spec-
trum.

The mel-cepstrum representation of acoustic
speech has had great success in all areas of speech
processing, including speech recognition. It has
been found to be a more robust, reliable fea-
ture set for speech recognition than other forms
of representation [Davis and Mermelstein, 1990,
Rabiner and Juang, 1993].  Thus, it was decided
that this was the best representation to be used for
the following recognition experiments. Moreover,
the cepstrum has been found to be invaluable in
identifying the voicing of particular speech segments
[Schafer and Rabiner, 1990].

To extract the mel-cepstrum coefficients from
the speech signal the Matlab speech process-
ing toolbox VOICEBOX was used [Brookes, 2000].
The first 12 cepstral coefficients, 12 delta-cepstral
coefficients, 1 log-power and 1 delta log-power
[Movellan and Mineiro, 1998]. This is a total of 26
features per acoustic frame, and 130 per data vec-
tor (5 frames), which is comparably to the number of
visual features.

4 Integration Architectures

This section overviews the three integration architec-
tures tested. The first is a simple early integration
technique, whilst the last two are more complicated
late integration architetures.

4.1 Early Integration

A very simple approach to early integration has been
followed. The acoustic and visual data sets are con-
catenated together, giving one large input vector from
which data transformation and recognition can oc-
cur [Hennecke et al., 1996]. This vector is then used
as input into a multi-layer perceptron (MLP) with 1
hidden layer. The number of neurons in the hidden
layer was equal to the logs of the number of input
neurons. Supervised training was performed using
backpropagation using a mean squared error perfor-
mance function and a training algorithm known as
resilient backpropagation. The purpose of resilient
backpropagation algorithm is eliminate the poten-
tially harmful effects of the magnitude of the gradi-
ent. Basically, it does this by only considering the
sign of the derivative to calculate the direction of the
weight update. The method is much faster than stan-
dard gradient descent and useful for large problems
[Demuth and Beale, 1998].

4.2 Late Integration

Many complicated techniques have been developed for
integration of acoustic and visual networks, however,
an analysis by Meier, Hurst and Duchnowski, found
that the best late integration technique was to use a
neural network for the integration [Meier et al., 1996,
Meier et al., 1999]. A bonus of late integration is that
the acoustic and visual data do not have to be in per-
fect synchrony, because the acoustic and visual sub-
nets effectively act as independent recognisers.

As the subnets are effectively their own recognis-
ers, the training of the late integration network is a
little bit more complicated than before and included
two phases. The two phases of training and the basic
architecture are outlined in figure 3 (ignore part 1b
for the momenet).
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Figure 3: Late Integration with Error Component.

The first phase involves training the acoustic and
visual subnets. Once the training of each subnet is
completed, the training data is passed through the
respective network which produces two outputs - one
from each subnet. Phase two of the training uses these
outputs by concatenating them together and then this
data is used to train the integration network. To test
the network, a separate set of acoustic and visual data
were passed through the respective subnets. The out-
put from each network was concatenated in the same
way as in training and then this data was used to test
the integration capabilities of the NN.

Most researchers use the brute force of the al-
gorithm to recognise each phoneme/word, ie each
modality attempting to recognise everything. Us-
ing late integration, however, one can alter what
each subnet is recognising. As would be expected
from psycholinguistic research the following were
tested: phoneme-phoneme (P-P), phoneme-viseme
(P-V), voicing-viseme (Voi-V), where the first is the
acoustic subnet and the second is the visual.

4.3 Late Integration with Error

To combat the amount of error that exists in the net-
work, two extra networks have been introduced into
the architecture (figure 3 - 1b). The two new net-
works can be considered as error predicting networks,
one for each subnet. The training stage for these NN,
part 1b, occurs after the training of the acoustic and
visual NNs, but before the integration network. The
training data for these networks is the same for which
subnet it is predicting the error for. The target pat-
tern is for the error network is,

T =Ta— 04, 2)

where Ty is the target vector, T4 is the target vector
for the acoustic subnet, and O 4 is the output of the
training acoustic network on the training data. The
same is also true for the visual error NN.

The result of equation 2 is in the range [-1,1], thus
in order to train the network to produce results in
this range a tan sigmoid tranfer function was used on
the output layer, rather than the log sigmoid which
tranforms data into the range [0,1].

The motivation behind this type of network is to
help the integration network decide when an input is
useful. Thus, the output of the error NN needs to
reflect the usefulness of data. In its present form the
output represents a high error as either -1 or 1, and
a perfect match with 0. This set up may actually
impede the performance of the integration network,

Table 3: Recognition accuracy (%) of separate acous-

tic and visual neural networks.
RAW | NORM | SVD [ N/SVD |

PHONEME
Acoustic | 11.8 21.2 16.2 20.9
Visual 84 11.5 10.9 14.7

VOICING

Acoustic | 54.8 58.4 53.1 53.5
Visual | 29.9 29.3 29.5 32.2
VISEME
Acoustic | 424 43.3 37.5 424
Visual | 30.6 54.7 44.1 53.0

thus before the output of the error NN is used for
training, it is transformed by,

TEtrans =1- |OE|7 (3)

which transforms the data such to a perfect classifi-
cation is ranked as 1 and a high error as 0.

5 Method and Data Preparation

In all the experimental results that follow, a 10-fold
procedure, with randomly selected training and test-
ing data for each trial, was adhered to. For each trial
the training and testing data were mutually exclusive,
however, there was no guarantee of evenly distributed
data, even though a uniform random number genera-
tor was used.

In addition to the raw data sets, a number of
transformations were performed in the hope to im-
prove recognition accuracy. The first transformation
was to normalise the data. The normalisation tech-
nique chosen here was to scale the data such that
it had a zero mean and unity standard deviation
[Demuth and Beale, 1998]. SVD was performed on
the data and attributes with eignvalues greater than
0.001 were used. We also tested a combination of
normalisation and then SVD. Therefore, there were
4 types of data to train each neural network upon -
raw, normalised(N), SVD, and N/SVD.

Phoneme, Viseme, or Voicing were the 3 possible
classification tasks for a NN to perform. 1) Phoneme
classification tasks involved discriminating bewteen
the stops /p,b,m,t,d,nk.gn/. 2) Viseme classes are
defined as labial ( / p, b m/ ), dental (/t,d,n/), and glot-
tal (/k,g,p/). 3) The voicing task discriminated be-
tween unvoiced (/p,t,k/), voiced (/b,d,g/) and nasal
stops (/m,n,y/). Thus, the tasks were 9, 3, and 3
item discrimination tasks, respectively.

6 Results

Before presenting the results the reader is reminder
that the NN were trained on a very limited set of data;
2 examples of each phoneme/position pair for each
of 3 subjects. Furthermore, low-cost OTS equipment
was used and each subject was seated 1.5 to 1.8 meters
from the recording device. Given this, the results
reported below are very promising.

Table 3 shows the overall recognition accuracy of
separate acoustic and visual NNs attempting to dis-
tinguish between the 9 phonemes, 3 viseme and 3
voicing groupings. It is immeadiately obvious from
this table that vision alone is not able to distin-
guish between the set of 9 phonemes or 3 voicing
groups with the accuracies hovering around guess-
ing level (11.1%, and 33.3%, respectively). Ac-
cording to the psycholinguistic work reviewed (e.g.
[Dodd and Campbell, 1987]) this is to be expected.



Table 4: Recognition accuracy (%) of early and late
integration architectures.

NORM [ N/SVD |

PHONEME
Early 17.0 20.1

Late, P-P 12.1 13.3
Late, P-V 13.9 15.8
Late, Voi-V | 29.0 241
Late/E 19.5 13.2

Significantly, the accuracy of the acoustic network is
above this rate. Interestingly, the visual network, as
predicted, outperforms the acoustic net on the viseme
recognition task. This is very promising for the next
stage of integration and indicates that vision alone
can differentiate between certain traditional linguis-
tic sound segments.

Another interesting observation from these prelim-
inary investigations is that normalisation of the data
greatly increases the accuracy of the network, espe-
cially in the case of vision. Thus, in subsequent ex-
periments only normalised or normalised/SVD data
was used in testing and training.

Table 4 outlines the results for all of the of integra-
tion architectures mentioned. The results gained from
the majority of the integration architectures were not
quite as good as hoped - and indeed have demon-
strated catastrophic fusion. FEarly, Late P-P, Late
P-V, and Late/E all had recall accuracies below the
acoustic only NN, which had an accuracy of 21.2% for
normalised data. However, the late integration using
voicing and viseme subnets an almost 40% increase
in accuracy. This clearly demonstrates that the psy-
cholinguistically guided integration architecture can
perform better than a stand alone acoustic recogniser
when there is a severly degraded signal in both the
acoustic and visual modalities.

7 Discussion

This paper, and the research associated with it, has
demonstrated the utility of AVSR in an everyday en-
vironment using low cost webcams. The following
discussion overviews the contributions of this paper
and highlights areas of current and possible future
research.

7.1 Red Exclusion

Red exclusion, the mouth feature extraction tech-
nique described in this paper, was developed because
other commonly used techniques did not perform well
on the database collected [Lewis and Powers, 2000].
This paper has demonstrated that red exclusion is a
viable technique for the extraction of mouth features
by its incorporation into this experimental AVSR sys-
tem with some moderate success.

Investigation into red exclusion has opened up
some interesting avenues of research. The spectral re-
flectance of human skin creates a characteristic “W”
shape, with minimums at 546nm and 575nm and the
local maximum (middle of the w) at around 560nm
[Angelopoulou et al., 2001]. Interestingly, this maxi-
mum is also the maximal response of the long wave-
length cones of the human retina. Current research is
looking at why the relationship might exist and how
this can be used to refine the red exclusion technique.
It is hypothesized that the red exclusive effect is re-
lated to the colour opponent properties of mammalian
vision.

7.2 Integration

There could be several factors contributing to the
unsatisfactory performance of the early integration
network. Firstly, due to the selection procedure the
acoustic and visual inputs are not perfectly synchro-
nised. Thus, it makes it difficult for the NN to learn
the relative timing between the two concatenated in-
puts [Hennecke et al., 1996]. This can impede the de-
tection of the voicing of the phoneme, and indeed
the acoustic only NN outperformed the early integra-
tion network in identifying the voicing, 58.4% ver-
sus 52.6%. Furthermore, the NN must also learn
the proper weigthing between the acoustic and vi-
sual data depending on the noise level. To be ef-
fective at this it must be trained at all noise levels
likely to occur, thus increasing the required training
set size. Therefore, another reason for the poor per-
formance is that because of the small training set, the
early integration NN was unable to learn the correct
weightings. Another explanation for the failure of in-
tegration, and one that is a fundamental problem of
NN, is that NNs are basically linear and produce a
kind of weighted average that is inappropriate in the
event of competition.

This late integration technique, P-P, could be con-
sidered a “no-holds-barred” approach to AVSR, and
also a little naive. With enough training the P-P net-
work maybe be able to correctly identify phonemes
by being able to correctly weight connections when
noise is present. However, even for humans it is very
difficult to tell the difference between a /p/ and /b/
when using visual information only. This is because
they belong to the same viseme grouping, such that
it would be more sensible, and linguistically correct
to use the visual data to extract information about
visemes, rather than phonemes. This was attempted
in the P-V network, yet under these conditions the
accuracy was only slightly better and still below that
of acoustic only. Thus, following linguistic intuition,
the Voi-V late integration network was used was good
success.

Even though the Late/E had poor recall accuracy
it is still an interesting approach and warrants fur-
ther investigation with a larger training base. A rea-
son why this network performed badly with respect
to the other networks could be to do with the train-
ing regime employed. In this case, the error analysis
network was trained with the output of the training
data. Thus, the subnets were attune to this data and
many of the outputs were near perfect. Thus, when
unseen data was used the error network may not have
acted correctly. A solution to this problem, if enough
data is available, is to use a validation set for the er-
ror network training. Therefore, the error network
will be trained on previously unseen data. This idea
could also extend to the integration network of all late
integration architectures. So, with a larger training
base the gamut of training regime could be explored
to find the most efficient and effective method.

7.3 Conclusion

This research has shown that multi-speaker AVSR is
useful in a natural office environment where the user
is not equiped with specialised eqiupment, eg close
head microphone, minimal external noise, etc. Via
red exclusion, a visual signal can be integrated into
recognition phase to help combat increasing acoustic
noise and increasing the accuracy of recognition. Us-
ing a knowledge from psycholinguistics, a late integra-
tion network was developed that fused the acoutic and
visual sources and increased the accuracy by around
40% over an acoustic only NN. AVSR is a floursh-
ing area of research with many avenues still open to



investigation, especially in the area of sensor fusion.
Current research is aiming to develop a conventional
ASR system, using a larger database, that is stable
with a distant microphone setup and examine the ef-
fect of moving to AVSR with this system.
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