Diagonal Ordering: A new approach to high-dimensional KNN

processing

Jing Hu

Bin Cui

Hengtao Shen

Department of Computer Science

National University of Singapore
3 Science Drive 2, Singapore 117543,
Email: {hujing, cuibin, shenht}@comp.nus.edu.sg

Abstract

In this paper, we propose Diagonal Ordering, a new
technique for K-Nearest-Neighbor (KNN) search in
a high-dimensional space. Our solution is based on
data clustering and a particular sort order of the data
points, which is obtained by ”slicing” each cluster
along the diagonal direction. In this way, we are
able to transform the high-dimensional data points
into one-dimensional space and index them using a
Bt-tree structure. KNN search is then performed as
a sequence of one-dimensional range searches. Ad-
vantages of our approach include: (1) irrelevant data
points are eliminated quickly without extensive dis-
tance computations; (2) the index structure can ef-
fectively adapt to different data distributions; (3) on-
line query answering is supported, which is a natural
byproduct of the iterative searching algorithm. We
conduct extensive experiments to evaluate the Diago-
nal Ordering technique and demonstrate its effective-
ness.

Keywords: High-dimensional index structure, Diago-
nal Ordering, KNN query

1 Introduction

Over the last two decades, high-dimensional vector
data has become widespread to support many emerg-
ing database applications such as multimedia, time
series analysis and medical imaging. In these appli-
cations, the search of similar objects is often required
as a basic functionality. To facilitate the similarity
search, feature vectors are extracted from the origi-
nal complex objects. Such feature vectors may bed
tens (e.g. color histograms) or even hundreds of di-
mensions (e.g. astronomical indexes). The similarity
of two objects is then measured as the distance be-
tween their corresponding feature vectors. Therefore,

Copyright (©2004, Australian Computer Society, Inc. This pa-
per appeared at Fifteenth Australasian Database Conference
(ADC2004), Dunedin, New Zealand. Conferences in Research
and Practice in Information Technology, Vol. 27. Klaus-Dieter
Schewe and Hugh Williams, Ed. Reproduction for academic,

not-for profit purposes permitted provided this text is included.

a similarity search can be translated into a nearest
neighbor query in a high-dimensional vector space.

There is a long stream of research on solv-
ing the high-dimensional nearest neighbor problem,
and many indexing techniques have been proposed
(Berchtold et al. 1996, Bohm et al. 2001, Bozkaya
et al. 1997, Ciaccia et al. 1997, Goldstein et al. 2000,
Sakurai et al. 2000, Weber et al. 1998, Yu et al. 2001).
The conventional approach addressing this problem
is to adapt low-dimensional index structures to the
requirements of high-dimensional indexing, e.g., the
X-tree (Berchtold et al. 1996). Although this ap-
proach appears to be a natural extension to the low-
dimensional indexing techniques, they suffer from the
curse of dimensionality greatly. Another approach is
to speed up the sequential scan by compressing the
original feature vectors. A typical example is the VA-
file (Weber et al. 1998). VA-file overcomes the dimen-
sionality curse to some extent, but it cannot adapt to
different data distributions effectively. These observa-
tions motivate us to come out with our own solution,
the Diagonal Ordering technique.

Diagonal Ordering behaves similar to the Pyra-
mid technique (Berchtold et al. 1998) and iDistance
(Yu et al. 2001). It works by clustering the high-
dimensional data space and organizing vectors inside
each cluster based on a particular sorting order, the
diagonal order. The sorting process also provides
us a way to transform high-dimensional vectors into
one-dimensional values. It is then possible to index
these values using a Bt-tree structure and perform
the KNN search as a sequence of range queries.

Using the B*-tree structure is an advantage for
our technique, as it brings all the strength of a
BT -tree, including fast search, dynamic update and
height-balanced structure. It is also easy to graft our
technique on top of any existing commercial relational
databases.

Another feature of our solution is that the diagonal
order enables us to derive a tight lower bound on the
distance between two feature vectors. Using such a
lower bound as the pruning criteria, KNN search is
accelerated by eliminating irrelevant feature vectors
without extensive distance computations.

Finally, our solution is able to support online query
answering, i.e. obtain an approximate query answer
by terminating the query search process prematurely.
This is a natural byproduct of the iterative searching
algorithm.

We implemented the Diagonal Ordering method
and conducted an extensive performance study to
evaluate its effectiveness. Our results show that the
proposed technique is able to provide superior per-
formance than sequential scan, the X-tree, iDistance
and VA-file on various data sets.

The rest of this paper is organized as follows: In
section 2, we review some related works. Then we
introduce and discuss our new approach, the Diagonal
Ordering, in section 3. The experimental evaluation
of our approach is presented in section 4 and section
5 concludes the whole paper.

2 Related Works

In the recent literature, a variety of index structures
have been proposed to facilitate high-dimensional
nearest-neighbor search. Existing techniques mainly
focus on three different approaches.

The first approach is based on data space parti-
tioning, which include the R*-tree (Beckmann et al.
1990), the X-tree (Berchtold et al. 1996), the SR-
tree (Katayama et al. 1997), the TV-tree (Lin et al.
1994)and many others. Although these methods gen-
erally perform well at low dimensionality, their per-
formance degrades as dimensionality increases and
the degradation can be so bad that sequential scan-
ning becomes more efficient. This phenomenon has
been termed “the curse of dimensionality”. Generally
speaking, nearest neighbor search in high-dimensional
spaces becomes difficult due to the following two im-
portant factors:

e as the dimensionality increases, the distance to
the nearest neighbor approaches the distance to
the farthest neighbor.

e the computation of the distance between two fea-
ture vectors becomes significantly processor in-
tensive as the number of dimensions increases.

The second approach is to represent original fea-
ture vectors using smaller, approximate represen-
tations. A typical example is the VA-file (Weber
et al. 1998). The VA-file accelerates the sequential
scan by the use of data compression. It divides the
data space into a 2% rectangular cells, where b de-
notes a user specified number of bits. By allocating a
unique bit-string of length b to each cell, the VA-file
approximates feature vectors using their containing
cell’s bit -string. KNN search is then equivalent to a
sequential scan over the vector approximations with
some look-ups to the real vectors. The performance
of the VA-file has been reported to be linear to the

dimensionality. However, the VA-file cannot adapt
effectively to different data distributions, mainly due
to its unified cell partitioning scheme.

One dimensional transformations provide another
direction for high-dimensional indexing. iDistance
(Yu et al. 2001) is such an efficient method for KNN
search in a high-dimensional data space. It relies on
clustering the data and indexing the distance of each
feature vector to the nearest reference point. Since
this distance is a simple scalar, with a small map-
ping effort to keep partitions distinct, it is possible to
used a standard B¥-tree structure to index the data
and KNN search be performed using one-dimensional
range search. The choice of partition and reference
point provides the iDistance technique with degrees
of freedom most other techniques do not have. The
experiment shows that iDistance can provide good
performance through appropriate choice of partition-
ing scheme. However, when dimensionality exceeds
30, the equal distant phenomenon kicks in, and hence
the effectiveness of pruning degenerates rapidly.

3 Diagonal Ordering

In this section, we propose our algorithm for KNN
search in high-dimensional data spaces. The algo-
rithm is based on a particular order of the data set,
the diagonal order, which is defined in the first part
of this section.

For the rest of this section, we assume that the
underlying database is a set of feature vectors in a
d-dimensional vector space. The Euclidean distance
is used as our metric distance function.

3.1 The Diagonal Order

To alleviate the impact of the dimensionality curse,
it helps to reduce the dimensionality of feature vec-
tors. For real world applications, data sets are often
skewed and uniform distributed data sets rarely oc-
cur in practice. Some features are therefore more im-
portant than the other features. It is then intuitive
that a good ordering of the features will result in a
more focused search. We employ Principle Compo-
nent Analysis (Jolliffe 1986) to achieve such a good
ordering and the first few features are favored over
the rest.

The high-dimensional feature vectors are then
grouped into a set of clusters by existing techniques,
such as K-Means, CURE (Guha et al. 1998) or
BIRCH (Zhang et al. 1996). In this paper, we just
applied the clustering method proposed in iDistance
(Yu et al. 2001). We approximate the centroid of
each cluster by estimating the median of the cluster
on each dimension through the construction of a his-
togram. The centroid of each cluster is used as the
cluster reference point.

Without loss of generality, let us suppose that we
have identified m clusters, Cy, C1,- - -, Cp,, with cor-
responding reference points, Og,O1, - -, 0, and the
first d’ dimensions are selected to split each cluster
into 29" partitions. We are able to map a feature vec-
tor P(p1,---,pq) into an index key key as follows:

key:i*ll+j*l2+zf=1|pt—ot|

where P belongs to the j-th partition of cluster C;
with reference point O;(01,09,-+,04), l; and Iy are
constants to stretch the data range. The definition of
the diagonal order follows from the above mapping
directly:

Definition 1 The Diagonal Order (<)

For two vectors P(p1,---,pq) and Q(q1,---,qq4) with
corresponding index keys key, and key,, the predict
P < Q is true if and only if key, < key,.

Figure 1: The Diagonal Ordering Example

Basically, feature vectors within a cluster are
sorted first by partitions and then in the diagonal di-
rection of each partition. As in the two-dimensional
example depicted in Figure 1, P < Q, P < R be-
cause P is in the second partition and @, R are in the
fourth partition. @ < R because |gy —0g|+|gy —0y| <
[Pz — 0g| + |ry — 0y|. In other words, @ is nearer to O
than R in the diagonal direction.

Note that for high-dimensional feature vectors, we
usually choose d’ to be a much smaller number than
d; otherwise, the exponential number of partitions in-
side each cluster will become intolerable. Once the
order of feature vectors has been determined, it is a
simple task to build a BT-tree upon the database. We
also employ an array to store the m reference points.
Minimum Bounding Rectangle (MBR) of each cluster
is also stored.

3.2 Query Search Regions

The index structure of Diagonal Ordering requires us
to transform a d-dimensional KNN query into one-
dimensional range queries. However, a KNN query

is equivalent to a range query with the radius set to
the k-th nearest neighbor distance, therefore, knowing
how to transform a d-dimensional range query into
one-dimensional range searches suffices our needs.

Suppose that we are given a query point) and a
search radius r, we want to find out search regions
that are affected by this range query. As the simple
two-dimensional example depicted in Figure 2 shows,
a query sphere may intersect several partitions and
the computation of the area of intersection is not triv-
ial. We first have to examine which partitions are
affected, then determine the ranges inside each parti-
tion.

MinDist(Q,M)

MinDist(Q,L)

Figure 2: Search Regions

Knowing the reference point and the MBR of each
cluster, the MBR of each partition can be easily ob-
tained. Calculating minimum distance from a query
point to an MBR is not difficult.
mum distance is larger than the search radius r, the
whole partition of data points are out of our search
range, therefore, can be safely pruned. For example,

If such a mini-

in Figure 2, partitions 0, 1, 3, 4 and 6 need not to be
searched. Otherwise, we have to do a further investi-
gation for points inside the affected partitions. Since
we have sorted all data points by the diagonal order,
the test whether a point is inside the search regions
has to be based on the transformed value.

In Figure 2, points A(as,ay,) and B(b,,by) are on
the same line segment L. Note that |a; — 05| + |ay —
oy| = |bg — 04| + |by — 0y|. This equality is not a
coincidence. In fact, any point P(ps,py) on the line
segment L share the same value of |p; —0g|+|py —0y|-
In other words, line segment L can be represented by
this value, which is exactly the Zflzl |pt — 0¢| compo-
nent of the transformed key value.

If the minimum distance from a query point @) to
such a line segment is larger than the search radius
r, all points on this line segment are guaranteed not
inside the current search regions. For example, in Fig-
ure 2, the minimum distance from line segment M to

Q is larger than r, from which we know that point C
is outside the search regions. The exact representa-
tion of C need not to be accessed. On the other hand,
the minimum distance from L to @ is less than r. A
and B therefore become our candidates. It also can
be seen in Figure 2 that some of the candidates are
hits, others are false drops due to the lossy transfor-
mation of feature vectors. Then, an access to the real
vectors is necessary to filter out all the false drops.

Before we extend the two-dimensional example
to a general d-dimensional case, let us define the
signature of a partition first:

Definition 2 Partition Signature

For a partition X with reference point O(o1,---,04),
its signature S(s1,---,sqs) satisfies the following
condition

¥ P(p1,---,pa) € X, i € [1,d], 5; = =2l

This signature is shared by all vectors inside the

same partition. In other words, if P(p1,---,pq) and
P'(pl,---,p;) belongs to the same partition with sig-
nature S(s1,---,Sq4), then

. ’ __ |pi—oi| _ |pi—oil
Vie[Ld], si= 1100 = o

Now we are ready to derive the formula for
MinDist(Q, L) in a d-dimensional case:

Theorem 1 MinDist(Q, key)

For a query vector Q(qi,.-.,q4) and a set of feature
vectors with the same key value, the minimum
distance from @) to these vectors is given as follows:

| Z:ﬂ:l(st*(qt—ot))—(key—i*ll—j*lz)|
T .
Proof: All points P(pi,---,pq) with the same key
value must reside in a same partition. Assume that
they belong to the j-th partition of the i-th cluster
and the partition has the signature S(s1,---,sq). In
order to determine the minimum value of f = (p; —
q1)?+- -+ (par — qa)?, whose variables are subjected
to the constraint relation sy * (p1 — 01) + - -+ + sS4 *
(par — 0ar) +i*ly +j *ly = key, Lagrange Multiplier is
the standard technique to solve this problem and the

& —04))—(key—ixls —j*la)]2
result is, [thl(st*(qt ot))d,(cy—ixh —jb)] . Note that

V[is always less than or equal to dist(P, Q). Thus,

d’ ; ;
|Zt=1(St*(qt—ot\)/)d;(key_z*ll_] wll is a lower bound to
dist(P, Q).

Back to our original problem where we need to
identify search ranges inside each affected partition,
this is not difficult once we have the formula for
MinDist. More formally:

Lemma 1 Search Range
For a search sphere with query point Q(q1,-..,q4)
and search radius r, the range to be searched within
an affected partition j of cluster ¢ in the transformed
one-dimensional space is

il +jxle+ Y0 (s0% (a0 — 00) —r VA,
ixl 4 jxla+ 0 (50 % (@ — 00)) + 7% V]

where partition j has the signature S(s1,--+,sa).

3.3 KNN Search Algorithm

Let us denote the k-th nearest neighbor distance of a
query vector @@ as KNNDist(Q). Searching for k near-
est neighbors of @) is then the same as a range query
with the radius set to KNNDist(Q). However, KN-
NDist(Q) cannot be predetermined with 100% accu-
racy. In Diagonal Ordering, we adopt an iterative
approach to solve the problem. Starting with a rela-
tively small radius, we search the data space for near-
est neighbors of (). The range query is iteratively
enlarged until we have found all the k nearest neigh-
bors. The search stops when the distance between the
query vector @ and the farthest object in Knn (an-
swer set) is less than or equal to the current search
radius r.

Algorithm KNN

Input: Q, CurrentKNNDist(initial value:co), r
Output: Knn (K nearest neighbors to Q)
step: Increment value t/"or search radius
svzikly+jxlo+ Y0 (5% (¢ — 0r))

KNN(Q, step, CurrentKNNDist)
load index
initialize r
while (r < CurrentKNNDist)
r =r + step
for each cluster i
for each partition j
if searched[i] [j] is false
if partition j intersects
sphere(Q,r)
searched[i] [j] = true
Inode = LocateLeaf(sv)
1b = LowerBound(sv,r)
ub = UpperBound(sv,r)
1p[i]l [j1 = Downwards(lnode,1b)
rpl[il [j] = Upwards(1lnode,ub)
else
if 1p[il[j] not null
1b = LowerBound(sv,r)
1p[il [j] = Downwards(
1p[il [j1->left,1b)
if rp[i]l [j] not null
ub = UpperBound(sv,r)
rpl[il [j] = Upperwards(
rpl[i] [j1->right,ub)

Figure 3: Main KNN Search Algorithm

Figures 3 and 4 summarize the algorithm for KNN
query search. The KNN search algorithm uses some

Algorithm Upperwards
Input: LeafNode, UpperBound
Output: LeafNode

Upwards (node, ub)
if the first entry in node has
a key value larger than ub
return node->left
for each entry E inside node
calculate dist(E, Q)
update CurrentKNNDist
update Knn
if end of partition is reached
return null
else if the last entry in node has
a key value less than ub
return Upperwards(node—>right, ub)
else
return node

Figure 4: Routine Upwards

important notations and routines. We shall discuss
them briefly before examining the main algorithm.
CurrentK NN Dist is used to denote the distance
between () and its current k-th nearest neighbor
during the search process. This value will eventu-
ally converge to KNNDist(Q). searched[i][j] indi-
cates whether the j-th partition in cluster ¢ has been
searched before. sphere(Q,r) denotes the sphere with
radius » and centroid Q. Inode, lp, and rp store
pointers to the leaf nodes of the Bt-tree structure.
Routine LowerBound and UpperBound return val-
ues i x [y +j*l2+Zf’:1(st*(qt—ot))—r*ﬁand
ikl +j*la+ Zflzl (5¢% (g —0y)) +7%+/d' correspond-
ingly. As a result, lower bound /b and upper bound
ub together represent the current search region. Rou-
tine LocateLeaf is a typical BT-tree traversal proce-
dure which locates a leaf node given the search value.
Routine Upwards and Downwards are similar, we
will only focus on Upwards. Given a leaf node and
an upper bound value, routine Upwards first decides
whether entries inside the current node are within the
search range. If so, it continues to examine each entry
to determine whether they are among the k nearest
neighbors, and update the answer set Knn accord-
ingly. By following the right sibling link, Upwards
calls itself recursively to scan upwards, until the in-
dex key value becomes larger than the current upper
bound or the end of the partition is reached.

Figure 3 describes the main routine for our KNN
search algorithm. Given query point @ and the step
value for incrementally adjusting the search radius r,
KNN search commences by assigning an initial value
to . It has been shown that starting the range query
with a small initial radius keeps the search space as

tight as possible, and hence minimizes unnecessary
search. r is then increased gradually and the query
results are refined, until we have found all the &k near-
est neighbors of Q.

For each enlargement of the query sphere, we look
for partitions that are intersected with the current
sphere. If the partition has never been searched but
intersects the search sphere now, we begins by locat-
ing the leaf node where () may be stored. With the
current one-dimensional search range calculated, we
then scan upperwards and downwards to find the k
nearest neighbors. If the partition was searched be-
fore, we can simply retrieve the leaf node where the
scan stopped last time and resume the scanning pro-
cess from that node onwards.

The whole search process stops when the
CurrentK NN Dist is less than r, which means fur-
ther enlargement will not change the answer set. In
other words, all the k& nearest neighbors have been
identified. The reason is that all data spaces within
CurrentK N N Dist range from () have been searched
and any point outside this range will have a distance
larger than Curren K NN Dist definitely. Therefore,
the KNN algorithm returns k nearest neighbors of
query point correctly.

A natural byproduct of this iterative algorithm is
that it can provide fast approximate k nearest neigh-
bor answers. In fact, at each iteration of the algo-
rithm KNN, there are a set of k candidate NN vec-
tors available. These tentative results will be refined
in subsequent iterations. If a user can tolerate some
amount of inaccuracy, the processing should be ter-
minated prematurely to obtain quick approximate an-
swers.

3.4 Analysis and Comparison

In this section, we are going to do a simple analy-
sis and comparison between Diagonal Ordering and
iDistance. iDistance shares some similarities with our
technique in the following ways:

e Both techniques map high-dimensional feature
vectors into one-dimensional values. KNN query
is evaluated as a sequence of range queries over
the one-dimensional space.

e Both techniques rely on data space clustering and
defining a reference point for each cluster.

e Both techniques adopt an iterative querying ap-
proach to find the k£ nearest neighbors to the
query point.
query answering and provide approximate KNN

The algorithms support online

answers quickly.

iDistance is an adaptive technique with respect to
data distribution. However, due to the lossy trans-
formation of data points into one-dimensional values,

Figure 5: iDistance Search Regions

false drops occur very significantly during the iDis-
tance search. As illustrated in the two-dimensional
example depicted in Figure 5, in order to search the
query sphere with radius r and query point @, iDis-
tance has to check all the shaded areas. Apparently,
P2, P3, P4 are all false drops. iDistance can’t elim-
inate these false drops because because they have
the same transformed value (distance to the reference
point O) as P1. Our technique overcomes this diffi-
culty by diagonally ordering data points within each
partition. Let us consider two simple two-dimensional
cases to demonstrate the strengths of Diagonal Order-
ing.

Case one The query point () is near to the reference
point O. Figure 6(a) shows the affected data space
by this query sphere in iDistance. Comparing to iDis-
tance, the affected area by the same query sphere for
our technique is much smaller. As shown in Figure
6(b), P is considered to be a candidate in iDistance
since dist(P, 03) € [dist(Q, 03) — r, dist(Q, O3) + r];
whereas P is pruned by Diagonal Ordering, for the
minimum distance from @Q to line L is already larger
than r.

Case two The query point @ is far from the refer-
ence point O. As shown in Figure 7(a), the affected
area in iDistance is still quite large, which almost con-
sists of half of the data space. Again, we observe that
the affected space under our technique is a lot smaller
comparing to Figure 7(a). This is because partition
0, 2 and 3 are already out of the search region. We
only need to consider partition 1 and diagonal order-
ing helps us reduce the affected space further.

Back to a general example where the cluster does
not contain the query point but intersects with the
query sphere. Figure 8(a) and Figure 8(b) demon-

5. 4

° 04

@ ®

Figure 6: iDistance and Diagonal Ordering (1)

° 02

(a (b)

Figure 7: iDistance and Diagonal Ordering (2)

() (b)

Figure 8: iDistance and Diagonal Ordering (3)

strate the affected space for iDistance and Diagonal
Ordering correspondingly. It is easy to see that our
technique outperforms iDistance as well.

4 Performance Evaluation

To demonstrate the practical impact of Diagonal Or-
dering and to verify our theoretical results, we per-
formed an extensive experimental evaluation of our
technique and compared it to the following competi-
tive techniques:

e iDistance
o X-tree
o VA-file

e Sequential Scan

4.1 Experimental Setup

Our evaluation comprises both real and synthetic
high-dimensional data sets. The synthetic data sets
are either uniformly distributed or clustered. We use
a method similar to that of (Chakrabarti et al. 1996)
to generate the clusters in subspaces of different ori-
entations and dimensionalities. The real data set
contains 32 dimensional color histograms extracted
from 68,040 images. All the following experiments
were performed on a Sun E450 machine with 450Mhz
CPU, running SUN OS 5.7. Page size is set to 4KB.
The performance is measured in terms of the average
disk page access, and the CPU time over 100 differ-
ent queries. For each query, the number of nearest
neighbor to search is 10 unless otherwise stated.

4.2 Performance behavior over dimensional-
ity

In our first experiment, we determined the influence

of the data space dimension on the performance of

KNN queries. For this purpose, we have created five

100K clustered data sets with the dimensionality 10,

15, 20, 25 and 30 to run our experiments.

Figure 9 demonstrates the efficiency of the Diago-
nal Ordering technique as we increase dimensionality.
It is shown that Diagonal Ordering outperforms other
methods in terms of disk page access and CPU cost.

During the index construction, Diagonal Ordering
performs clustering and partitioning, which helps to
prune faster and access less IO pages. On the other
hand, VA-file cannot make full use of the clustering
characteristics and perform worse than Diagonal Or-
dering. However, as the dimensionality increases, the
gap between the performance of VA-file and Diagonal
Ordering becomes smaller. This is mainly because it
is more and more difficult to find a good clustering
scheme as the dimensionality keeps growing.

The iDistance technique also relies on the effi-
ciency of clustering and partitioning of the data space.

3000 .
Scan

agonal Orderint
VAile

2500 X-tree —eo—

T
!

2000

T
!

1500 —

Page access

1000 B

2000

iDistance —e—
X-tree —e—

1500

1000

Dimensionality

CPU Cost (ms)

Figure 9: Performance Behavior over Data Size

Diagonal Ordering performs better because it can
eliminate more false drops during the querying pro-
cess, as we have presented in section 3.4. In figure 9,
Diagonal Ordering achieves averagely 30% improve-
ment over iDistance.

It is also observable that the efficiency of query
processing using the X-tree rapidly decreases with
increasing dimensions. When the dimensionality is
higher than 15, almost all vectors inside the data
set are completely scanned. From this point on, the
querying cost of the X-tree grows linearly and even
become worse than a sequential scan, which is mainly
due to the X-tree index traversal overhead. The rea-
son is that the X-tree employs rectangular MBRs to
partition the data space; whereas high-dimensional
MBR tends to overlap with each other significantly.
As a result, the X-tree cannot prune effectively in
high-dimensional data space and incurs a high query-
ing cost.

MBR is also used by Diagonal Ordering, but in a
different way. First, MBR is used to represent the
data space of each partition. It is not involved in
the partition process at all. The generated MBRs are
guaranteed not to overlap with each other. Second,
the partition process is working on a d’-dimensional
space instead of the original d-dimensional space. By
using Principle Component Analysis, these MBRs of

size 2 * d’' can still capture the most characteristics of
each partition. Therefore, in our case, using MBR in
the pruning process is still valid and effective.

4.3 Performance behavior over data size

In this experiment(c.f. Figure 10), we measured the
performance behavior with varying number of data
points. We performed 10NN queries over the 16-
dimensional clustered data space and varied the data
size from 50,000 to 300,000.

5000

4500

4000

3500

3000

2500

Page access

2000

1500

1000

500

0

. . . .
50 100 150 200 250 300
Data size

2000
Scan —*—

Diagonal Ordering —&—
VA-file —a—

iDistance —e—

X-tree —e—

1500
1000

I I I
50 100 150 200 250 300
Data size

CPU cost (ms)

Figure 10: Performance Behavior over Data Size

Figure 10 shows the performance of query process-
ing in terms of page access and CPU cost. It is ev-
ident that Diagonal Ordering outperforms the other
four methods significantly. We also noticed that the
X-tree has exhibited an interesting phenomenon in
Figure 10(b): the performance of the X-tree is worse
than a sequential scan when the size of database is
small (size < 150K) and slightly better than a se-
quential scan when the size of the database becomes
large. This is because the expected nearest neigh-
bor distance decreases as the size of the data set in-
creases. A smaller KNNDist(Q) will help the X-tree
to achieve a better pruning effect such that less parts
of the X-tree will be traversed and the CPU cost could
be improved.

4.4 Performance behavior over K

In this series of experiments, we used the real data set
extracted from 68,040 pixel images. The effects of an
increasing value of K in a K nearest neighbor search
are tested. Figure 11 demonstrate the experimental
results when K ranges from 10 to 100. Among these
indexes, the cost of the X-tree is still most expen-
sive. The performance of iDistance and VA-file are
pretty close to each other. In fact, the pruning effect
of iDistance keeps degenerating as the dimensional-
ity increases and it is finally caught up by the VA-
file when the dimensionality exceeds 30. As shown
in figure 11, Diagonal Ordering still retains a good
performance. The smarter partitioning scheme and
the pruning effectiveness of Diagonal Ordering helps
to benefit more from the skewness of the color his-
tograms.

3000 T

T
Scan —*—
Diagonal Ordering —&—

VA-file —a—
iDistance —e—

2500 X-tree —eo—

T

2000 B

1500 —

L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Page access

2000

T
Scan —¥—

tegonatOrderng——=—
VA-file —a—
iDistance —e—
X-tree —e—

1500 B

1000 B

10 20 30 40 50 60 70 80 90 100

CPU cost (ms)

Figure 11: Performance Behavior over K

5 Conclusion

In this paper, we have addressed the problem of KNN
query processing for high-dimensional data. We pre-
sented an efficient index method, called Diagonal Or-
dering, for KNN search, and can be easily extended to
support other queries, such as range query. Diagonal
Ordering applied a particular sort order of the data
points along the diagonal direction, and also utilized

Principle Component Analysis and data clustering to
adapt to different data distributions. We derived a
lower distance bound as the pruning criteria, which
accelerates the KNN query processing further. Ex-
tensive experiments were conducted and the results
show that Diagonal Ordering is an efficient method
for high-dimensional KNN searching. We also show
that Diagonal Ordering can achieve a better perfor-
mance than many other indexing techniques.

6 Acknowledgments

We would like to thank BengChin Ooi for his helpful
comments and discussion on this paper.

References

N. Beckmann, H.-P. Kriegel R. Schneider, B. Seeger
The R*-tree: An efficient and robust access
method for points and rectangles, Proc. 1990
ACM SIGMOD International Conference on
Management of Data, pp. 322-331.

S. Berchtold, C. Bohm, H. V. Jagadish, H. P.
Kriegel, J. Sander (2000), Independent quantiza-
tion: An index compression technique for high-
dimensional data spaces, Proc. 16th ICDE Con-
ference, pp. 577-588.

S. Berchtold, C. Béhm, H-P. Kriegel The pyramid-
technique: Towards breaking the curse of di-
mensionality, Proc. 1998 ACM SIGMOD Inter-
national Conference on Management of Data,
pp. 142-153.

S. Berchtold, D. A. Keim, H. P. Kriegel (1996), The
x-tree: An index structure for high-dimensional
data, Proc. 22th VLDB Conference, pp. 28-39.

C. Bohm, S. Berchtold, D. Keim (2001), Search-

ing in high-dimensional spaces: Index struc-
tures for improving the performance of multime-
dia databases, ACM Computing Surveys 33(3),

pp. 322-373.

T. Bozkaya, M. Ozsoyoglu (1997), Distance-based in-
dexing for high-dimensional metric spaces, Proc.
of the ACM SIGMOD Conference, pp. 357-368.

K. Chakrabarti, S. Mehrotra (2000), Local dimen-
sionality reduction: A new approach to index-
ing high dimensional spaces, Proc. 26th VLDB
Conference, pp. 89-100.

P. Ciaccia, M. Patella, P. Zezula (1997), M-tree: An
efficient access method for similarity search in
metric spaces, Proc. 24th VLDB Conference,
pp. 194-205.

J. Goldstein, R. Ramakrishnan (2000), Contrast plots
and p-sphere tree: Space vs. time in nearest

neighbor searches, Proc. 26th VLDB Conference,
pp. 429-440.

S. Guha, R. Rastogi, K. Shim, (1998), Cure: an ef-
ficient clustering algorithm for large databases,
Proc. ACM SIGMOD International Conference
on Management of Data.

I. T. Jolliffe (1986), Principle Component Analysis,
Springer-Verlag

N. Katayama, S. Satoh (1997),The SR-tree: An Index
Structure for High-Dimensional Nearest Neigh-
bor Queries, Proc. of the ACM SIGMOD Con-
ference, pp. 369-380.

K. Lin, H. V. Jagadish, C. Faloutsos (1994), The TV-
tree: An index structure for high-dimensional
data, The VLDB Journal, Vol. 3(4), pp. 517-542.

Y. Sakurai, M. Yoshikawa, S. Uemura, H. Kojima
(2000), The a-tree: An index structure for high-
dimensional spaces using relative approximation,
Proc. 26th VLDB Conference, pp. 516-526.

R. Weber, H. J. Schek, S. Blott (1998), A quan-
titative analysis and performance study for
similarity-search methods in high-dimensional
spaces, Proc. 24th VLDB Conference, pp. 194—
205.

C. Yu, B. C. Ooi, K. L. Tan, and H. V. Ja-
gadish (2001), Indexing the distance: An ef-
ficient method to knn processing, Proc. 27th
VLDB Conference, pp. 421-430.

T. Zhang, R. Ramakrishnan, M. Livny, (1996),
BIRCH: an efficient data clustering method for
very large databases, Proc. ACM SIGMOD In-
ternational Conference on Management of Data.

