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Abstract

Audio-Visual Speech Recognition (AVSR) uses vision
to enhance speech recognition but also introduces the
problem of how to join (or fuse) these two signals
together. Mainstream research achieves this using a
weighted product of the output of the phoneme clas-
sifiers for both modalities. This paper analyses cur-
rent weighting measures and compares them to sev-
eral new measures proposed by the authors. Most
importantly, when calculating the dispersion of the
output there is a shift from analysing the variance to
analysing the skewness of the distribution. Experi-
ments in AVSR using neural networks raise questions
of the utility of such measures with some intriguing
results.

Keywords: Sensor Fusion, Speech Recognition, Neu-
ral Networks.

1 Introduction

The objective of Audio-Visual Speech Recognition
(AVSR) is to enhance traditional speech recognition
by incorporating a visual signal into the system. A
simple way to achieve this is to combine both the
acoustic and visual features into one large feature vec-
tor which is used for recognition. This technique is
effective, given enough training data, but we can use
knowledge from psychology and linguistics to conceive
a more elegant system for combination. For example,
it is known that visually perceivable speech gestures
group into distinct classes of phonemes (known as
visemes), and that these classes are complementary
to speech sounds difficult to perceive in high acoustic
noise (Walden et al., 1977). Sub-systems can thus be
specialised for their modality and increase the overall
system accuracy (Lewis and Powers, 2003). However,
a one-to-many mapping exists between visemes and
phonemes, so it may add another layer of complexity.

One of the most profound effects discovered in psy-
cholinguistic research is the McGurk Effect (McGurk
and MacDonald, 1976). If the audio of a person say-
ing the sound “ba” is dubbed over the video of a
person mouthing the sound “ga,” the listener will
perceive the sound “da.” The brain has fused to-
gether the two competing signals. The effect is so
strong that the researchers who discovered this at first
thought the technicians had made a mistake. This re-
sult definitively showed that vision does have an influ-
ence over our perception of speech. The effect has also
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been extended to manipulate entire sentences (Mas-
saro and Stork, 1998).

Research into machine AVSR has been very fruit-
ful and systems have been developed showing very
encouraging results (for a comprehensive review see
Hennecke et al. (1996)). Although only minimal im-
provement is found under optimal conditions, im-
provements using a degraded acoustic signal have
been large (Hennecke et al., 1996). For example,
Meier et al. (1999) reported up to a 50% error re-
duction when vision is incorporated. However, a new
problem also arises with AVSR, which is how to best
combine the acoustic and visual signals without the
result being worse than acoustic or visual recogni-
tion alone. This is referred to as catastrophic fu-
sion (Movellan and Mineiro, 1998). This is a lively
research area in AVSR and the effectiveness of differ-
ent techniques, such as early, intermediate, and late
fusion, are still being decided.

This paper briefly introduces the concept of sen-
sor fusion with a more in depth look at current main-
stream sensor fusion in the area of AVSR. Some of
the more common techniques are then analysed and
compared to several modifications to the standard al-
gorithm.

2 Sensor Fusion

Information/Sensor/Data Fusion has had a long his-
tory, especially in the military domain. With the re-
cent explosion in Data Mining, sensor fusion has been
enjoying a renewed life with a focus on both expand-
ing and refining data sets. Another area of sensor
fusion that is also increasing in interest is the fusion
of ontological data, and how this relates to the way
in which the brain accomplishes this task given the
enormous amount of fusion of sensory data that it
performs.

2.1 Overview

Consider a sensor that has some unreliability associ-
ated with it and at times the output of this sensor is
incorrect. When this error occurs is not known a pri-
ori. Thus, the sensor is basically useless, as we cannot
determine when its readings are accurate. However,
if we have another sensor with the same measuring
ability (including its faults) then we can more reli-
ably capture whatever it is we are sensing if we fuse
the two sensor outputs to give one result. Increas-
ing the number of sensors would increase the reliabil-
ity providing the sensors/errors are (at least partly)
independent. This type of fusion is known as com-
petitive fusion, as the two sensors are competing to
give the correct information, and works by using the
redundant information contained in the overlapping
sensors (Visser, 2001).



A key assumption in competitive fusion situations
is that the noise contained in the output of the sensor
is uncorrelated and independent from other sensors
or classifiers (Kittler, 2000). Therefore when outputs
are fused together the noise present will be cancelled
out and the actual signal will be enhanced. However,
if the noise present is correlated in some way, then the
contribution of the noise to the output may actually
be intensified.

A more interesting form of data fusion (and less af-
fected by correlated noise) is known as complementary
fusion. This is where one sensor has an incomplete
or different view of the world whilst other sensors can
complete the picture. Thus, each sensor contributes
to give an overall picture of the world. This process
can be slightly complicated by the fact that the sens-
ing capabilities of each sensor may overlap and, more
importantly, the sensor may be working with different
representations, for example, a camera and a micro-
phone.

Another issue that arises when different represen-
tations are involved is which representation to fuse in.
One can fuse the data in each of the different repre-
sentations, choose one representation as the base and
convert all others to it, or choose an internal abstract
representation that all sensor outputs are converted
to. The latter two options are the preferred as this re-
moves the conversion out of the fusion process, which
is complicated enough.

Figure 1 is a schematic description of the differ-
ence between competitive and complementary fusion.
On the left the two sensors are both attempting to
identify a black square and thus a competitive fusion
scheme would be used. Once that fusion has taken
place the result is fused in a complementary fashion
with the sensor on the right to complete the scene -
a square and a triangle.

Complementary
Fusion

Competitive
Fusion

Figure 1: Example of competitive and complementary
fusion

2.2 Sensor Fusion in AVSR

Initially this line of research investigated sensor fu-
sion in the area of AVSR, however, sensor fusion is
much broader than just AVSR and has applications
in many domains. Moreover, this area of research is

also known by many different names: classifier fusion,
classifier combination, mixture of experts, commit-
tees of neural networks (NN), consensus aggregation,
voting pool of classifiers, classifier ensembles, to name
just a few (e.g., Kuncheva and Jain, 2000). Nonethe-
less, this section mainly focuses on sensor fusion in the
domain of AVSR overviewing key aspects of different
fusion systems.

Sensor fusion in AVSR broadly takes two differ-
ent forms: early fusion (EF) and late fusion (LF).
This differentiation is also called Feature/Decision
fusion and Direct Identification/Separated Identifi-
cation (DI/SI). Early Fusion is the case where fea-
tures are extracted from the respective signals and
then they are fused to create a combined feature
vector that is used for recognition (Hennecke et al.,
1996). Late fusion, on the other hand, is when feature
vectors are extracted separately, classified separately,
and then the results of the classifications (decision)
are combined to give a final result. When following
the DI model sensor fusion occurs automatically, and
it is up to the recognition engine to decide upon the
important features. This is the default approach if
using ASR already.

Under the more sophisticated SI model, fusion be-
comes somewhat trickier. The simplest case is when
the outputs of separate artificial NNs (ANNs) are fed
into another ANN that effectively performs the fusion
task. In the case of Hidden Markov Models (HMMs),
the resulting log-likelihoods are combined in some
way to produce a final estimate. The most common
(and simplest) way to fuse the log-likelihoods is to
combine them in such a way to maximise their cross-
product. Late fusion (ie., SI) is an evolving area in
AVSR and is a difficult issue to contend with because
fusing the two signals can lead to catastrophic fusion
(Movellan and Mineiro, 1998). This is when the accu-
racy of the fused outcome is less than the accuracy of
both individual systems alone. Much work is under-
way for both HMMs and ANNs in trying to automat-
ically bias one signal when conditions are adverse for
the other (e.g. Adjoudani and Benoit, 1996; Massaro
and Stork, 1998; Movellan and Mineiro, 1998).

There is still no consensus in the literature to when
fusion should occur in the process. On theoretical
grounds and the necessity of maintaining temporal re-
lationships between the signals, many argue for early
fusion (eg. Bregler et al., 1996; Basu and Ho, 1999).
For example, Hennecke et al. (1996) state that late
fusion is just a special case of early fusion and given
the right conditions “. . . a system that uses early in-
tegration should perform at least as well as one that
integrates at a later stage. (Hennecke et al., 1996, p.
338).” Indeed, if an inadequate set of sensor specific
features are used, essential information can be thrown
away in late fusion. Comparative empirical studies,
however, have found that late fusion techniques are
performing better than early fusion even with the loss
of synchronisation (eg. Adjoudani and Benoit, 1996;
Meier et al., 1999). The review that follows is mainly
made up of research involving variants of late fusion
as this technique has many more issues to overcome.

Potamiaonos and Potamianos (1999) use a multi-
stream HMM in which the visual stream is just an-
other parameter to the HMM. The emission proba-
bility of the HMM is equal to the product of the sum
distributions of each stream, for example,

P (W |A, V ) = argmax
W

(P (W |A)λAP (W |V )λV ) (1)

These sum of distributions are augmented by a
stream exponent λ. This exponent models the relia-
bility of each stream and satisfies,

0 ≤ λA, λV ≤ 1, and λA + λV = 1 (2)



The stream exponents are estimated using a gener-
alised probabilistic descent algorithm. This appears
to occur initially during training, but it is unclear as
to whether the exponents are dynamically estimated
during recognition. Thus in this system the late fu-
sion is taking place via a weighted product of the con-
tributions from the acoustic and visual channels. This
is probably the most common approach to sensor fu-
sion in this field and demonstrates that the AV system
is superior to the acoustic or visual alone. Although
the word accuracy by this system is high (90.5% for
AV) the weights on each stream are determined a pri-
ori to test time (i.e. on the training set) and thus if
the conditions change enough the weightings might
not correctly reflect the reliability of each the signals.

Neti et al. (2001) and Glotin et al. (2001) have pro-
duced comparative studies of early, late with constant
weighting, and late with dynamic weighting audio-
visual fusion schemes. The dynamic technique was
based on the degree of voicing present in the audio
stream average over the entire utterance such that
0 ≤ λA = degree of voicing ≤ 1 and λV = 1 − λA.
Overall, the fusion system using the dynamic weights
outperformed all others on a word recognition task
in both clean and noisy acoustic conditions. Interest-
ingly, in clean acoustic conditions some of the late fu-
sion techniques were outperformed by the early fusion
and in some cases even demonstrated catastrophic fu-
sion.

Dynamically setting the weights based on the cur-
rent utterance is a preferred method of fusion. This
utterance based method, however, is somewhat lack-
ing in its ability to generalise to other situations. For
example, if there was a loud, brief sound in the back-
ground this might affect the overall average for the
utterance and hence distort the weighting consider-
ably. Calculating the median instead of a mean might
correct the weights for the majority of the speech seg-
ment, but then at extra noisy sections performance
would degrade. Dynamically determining the weights
needs to occur at a lower level. Moreover, waiting
until the end of the utterance to determine weights
means that fusion can only take place after the entire
utterance has been spoken.

Dupont and Leuttin (2000) tackle the problem of
continuous speech recognition. In continuous speech
recognition the system must deal with co-articulation
and the fact that the utterance has no predetermined
length. They claim that because of these factors wait-
ing until the end of utterance to fuse is too time con-
suming for late fusion architectures and that fusion
should occur during the utterance. Moreover, a list
of the best hypotheses (the N-best) must be kept for
each state until fusion occurs. Their speech recog-
nition system consists of a multi-stream HMM with
NN as HMM state probability estimators. This sys-
tem uses anchor points to denote where individual
streams must synchronise (fuse).

These anchors may occur on relevant phonologi-
cal transition points, such as phonemes, syllable or
words. Dupont and Leuttin (2000) only test anchor
points at the HMM state and word level. Fusion is a
weighted product of the segment likelihoods. These
weights are determined by automatically estimating
the acoustic signal to noise ratio (SNR), such that the
higher the SNR, the higher the weight to the acoustic
information. They mention that with a clean signal
the addition of visual information did not increase
accuracy. However, with a clean signal (high SNR)
the weight was very high, and it might be that the
visual system does not have the ability to influence
the result given this weighting. Early fusion yielded
inferior results compared to the different late fusion
techniques. The most successful late fusion technique
was with combination at the word level.

In their work, Adjoudani and Benoit (1996) strive
for AV > A and AV > V over all testing condi-
tions and explore several progressive models of fusion.
The first, an early fusion method, fails in acoustically
noisy conditions because it is dragged down by the
inability of the system to capture the contribution of
the visual parameters. The first late fusion technique
is a simple maximisation of the product of the re-
sulting probabilities across each output channel. In
high SNR conditions the system is able to take advan-
tage of the complementary information between the
signals with AV outperforming both subsystems. In
poor acoustic conditions, however, the system is once
again not able to correctly attribute each subsystem.

To overcome the inadequacy of the combination
so far, Adjoudani and Benoit (1996) introduced a
certainty factor to differentially weight each subsys-
tem. This weighting factor differs from previously
discussed architectures as it is not solely based upon
the level of acoustic noise within the signal. Rather, it
is based upon the dispersion of the N-best hypotheses
in each modality. Thus, large differences in probabil-
ities equates to greater certainty, close probabilities
to less certainty. This dispersion value is based upon
the variance of the output classifier, as in

σ2 =
1

N − 1

n
∑

n=1

(Rn − µ)2, (3)

where Rn is the nth output of the classifier.
The first application of the certainty factor was a

binary selection of either the acoustic or visual hy-
pothesis based on which had the greatest certainty.
This method satisfies the original criteria set by Ad-
joudani and Benoit (1996), however it can only ever
choose between the classfication of the individual sub-
systems because of its binary nature. A weighted
product version of the late fusion system based on
a normalised dispersion certainty factor, as in

λ =
σA

σA + σV

, (4)

combined the acoustic and visual systems synergisti-
cally over all noise levels and can choose a different
class from either subsystem.

The dispersion idea used by Adjoudani and Benoit
(1996) has been implemented by other researchers in
various forms (e.g. Meier et al., 1999; Potamianos and
Neti, 2000; Heckmann et al., 2001a). Using Gaussian
mixture model (GMM) to classify phonemes, Potami-
anos and Neti (2000) use an N-best dispersion method
that is framed as the difference between each pair of
nth-best hypotheses, given by,

2

N(N − 1)

N
∑

n=1

N
∑

n′=n+1

(Rn − Rn′), (5)

where N ≥ 2 and Rn is equal to the nth best hypothe-
sis. Interestingly, both Adjoudani and Benoit (1996)
and Potamianos and Neti (2000) have found that an
N-best of 4 has been the most successful. Potami-
anos and Neti (2000) also use a method called N-best
likelihood ratio average in which the difference is only
calculated against the best hypothesis, that is,

1

N − 1

N
∑

n=2

(R1 − Rn), (6)

where R is now sorted in descending order, such that
this is the difference between the best hypothesis and
the rest.



The best performing system here was the one using
dispersion as a confidence measure with a phoneme
accuracy of 55.19%. The ratio average achieved an ac-
curacy of 55.05%. Both of these methods were signif-
icantly better than the baseline acoustic only system.
Another confidence method based on the negative en-
tropy of the stream was unable to achieve accuracy
significantly better than the baseline.

Basu and Ho (1999) also used GMMs for recog-
nition but only looked at early fusion. In compari-
son to Potamianos and Neti (2000), the accuracy of
the system on the test data was consistently below
50%. Moreover, the combined feature vector pro-
vides little increase in accuracy. The value of this
research however is that they also test the system on
a real-life data set. That is, a data set not collected
in a controlled environment and without specialised
equipment. The performance on this data set drops
dramatically with 33% for acoustic only and 9% for
visual only. This clearly demonstrates that moving
out of the experimental environment can severely af-
fect even the “state-of-the-art” systems.

Heckmann et al. (2001a) use a hybrid ANN/HMM
AVSR system with the NNs providing the a posteriori
probabilities for the HMM which provide the phone
and word models (language models). Heckmann et al.
(2001a) argue for and use a late fusion method and
use a weighting method they call Geometric Weight-
ing. Detecting the most probable phoneme is found
by a conditional probability that is augmented by the
geometric weights. The value of the weight is based
on another value c and they want c to reflect an es-
timate of the SNR of the acoustic signal. To achieve
this they use a similar idea as dispersion by exploit-
ing the distribution of the a posteriori probabilities
at the output of the MLP, but based on the calculated
entropy,

H = −
1

K

K
∑

k=1

N
∑

n=1

P̂ (Hn,k|xA,k)log2P̂ (Hn,k|xA,k),

(7)
where N is the number of phonemes and K is the
number of frames. They created a mapping between
c and H through an empirical analysis of the values
(optimisation process). Results (Word Error Rates
(WER)%) show a synergistic gain using this tech-
nique down to -6dB (high noise level) where it starts
to perform worse than the visual. The automatic
weighting performs similarly to manually setting c.
They have also compared using entropy for setting
c to using a Voicing Index and Dispersion methods,
however, the entropy based c still gave the best results
(Heckmann et al., 2001b).

Using a Multiple State-Time Delayed NN (MS-
TDNN), Meier et al. (1999) utilise the flexibility of
the NN to employ several different fusion methods
for AVSR. They look at both the traditional early and
late fusion but also fusion on the hidden layer of the
NN. The early fusion technique included the standard
concatenation and also the inclusion of an estimated
SNR for the acoustic data. Late fusion is explored
in two different architectures. The first is a weighted
sum of the acoustic and visual systems. The weight
was determined either by a piecewise-linear mapping
to the SNR of the acoustic signal or by what they
called “entropy weights”. The calculation of entropy
weights was not fully described in this paper (or pre-
viously for that matter, e.g. Meier et al., 1996), how-
ever, their description of the purpose of the weights,
High Entropy = Even Spread = High Ambiguity =
Low Accuracy, is reminiscent of the dispersion con-
cept from Adjoudani and Benoit (1996). The entropy
weights were further augmented by a bias b that “. . .
pre-skews the weights to favour one of the modalities

(Meier et al., 1999, p. 4)” This b value was set by
hand to reflect quality of the acoustic data.

A more interesting and novel technique introduced
by Meier et al. (1999) is the learning of the weights.
They used another NN to combine both the acoustic
and visual hypotheses with the output being the com-
bined phoneme hypothesis. Theoretically, this tech-
nique should be able to at least match the perfor-
mance of the other late fusion techniques as it can
not only compute pair-wise comparison but also po-
tentially make comparisons across the phoneme and
viseme sets, thus taking advantage of the complemen-
tary information contained within the signal better
than the simple weighted summation. In fact, best
performance was with NN weight learning (except in
high noise conditions). As would be expected from
the bias b, entropy and SNR weighting performed
similarly throughout. Early and hidden layer fusion
combinations were, as others have found, poorer in
performance.

Movellan and Mineiro (1998) compare standard
Bayesian fusion technique (sum of log likelihoods)
with what they call a robustified approach. They ar-
gue that most fusion system suffer from catastrophic
fusion because they make implicit assumptions and
degenerate quickly when those assumptions are bro-
ken and used outside its original context. The robus-
tified approach makes these assumptions explicit by
including extra parameters that represent the non-
stationary properties of the environment. These pa-
rameters make up what is dubbed the context model.
This approach works by not only maximising the
probability with respect to the word but also to each
context model (acoustic and visual). Movellan and
Mineiro (1998) prove analytically that their approach
is superior to the traditional as when the measure-
ments yield data far from the model the traditional
fusion system is heavily influenced by this subsystem.
In contrast, the robustified approach limits the in-
fluence of signals far from a contextual model. Ap-
plied to AVSR using a HMM, this technique outper-
forms the classical in acoustic noise as well as with
visual noise, an area not investigated by many re-
searchers. In situations where normal fusion exhibits
catastrophic fusion, the robustified fusion is no worse
than acoustic or visual subsystems.

Not all of the research conducted follow the rigid
late fusion architecture of weighted sum/product of
hypotheses. For example, Verma et al. (1999) investi-
gated audio-visual phone recognition using Gaussian
mixture models with their second and third late fu-
sion techniques being somewhat out of the ordinary.
They look at three models of late fusion: 1) sim-
ple weighted sum, 2) weighted sum but V identifying
only viseme and using an associated probability of the
phoneme given the viseme, and 3) use both A and
V to predict viseme (weighted sum, phase 1), then
based on viseme class predict which phoneme class
(weighted sum, phase 2). The sum of the weights was
equal to 1 and was again adjusted manually. The
recognition accuracies of the GMMs were well be-
low that of systems combined with HMM. The third
fusion technique (multi-phase) performed the best.
However, this technique is not the most intuitive and
a prime example of a system developed without lin-
guistic knowledge. The very characteristic that is
masked by noise in acoustic speech is the one that
distinguishes the viseme classes (eg. /b/ from /d/,
place of articulation), so that using hypotheses de-
rived from the acoustic data in phase 1 could be more
of a hindrance (although this isn’t what is found in
their experiments). Then in phase 2 they use V to
distinguish within viseme classes! This is again very
counterintuitive, given the definition of a viseme.

A more logical approach to fusion is presented by


