Aspects to Visualising Reusable Components

Stuart Marshall, Kirk Jackson, Craig Anslow and Robert Biddle

School of Mathematical and Computing Sciences
Victoria University of Wellington
PO Box 600, Wellington, New Zealand

Email: stuart.marshall@vuw.ac.nz

Abstract

We are interested in helping developers reuse software
by providing visualisations of reusable code compo-
nents. These visualisations will help determine if and
how a given code component can be reused in the
developer’s new context. To provide these visualisa-
tions, we need both formatted information and tools.
We need a format to describe the visualisations in.
We need tools to create the visualisations. We need a
format to describe information about the component
and its runtime usage, and we need a tool to gather
this information in the first place.

In this paper, we discuss our two wish-lists for the
required information formats. We set this against the
background of software visualisation and code reuse
research. Currently we are working with components
from object oriented languages, specifically Java.

Keywords:
Code Reuse.

Software Visualisation, Test Driving,

1 Introduction

For all the benefits that reusing code is claimed to be
able to deliver, it is perceived that code reuse is not as
widespread or as efficiently implemented as it could
be. Certainly, code reuse does happen on some levels.
A common example of this is the increasing range and
availability of libraries and APIs for the Java platform
that offer rich opportunities for reuse. But even where
code reuse is possible, often the rewards in time and
effort saved are not as great as they could be due to
problems in the process of reuse.

There have been several areas of cost identified in
the reuse process, where cost is measured in time, ef-
fort and financial terms. One such area is the time
and effort required to understand if and how a given
fragment of old code (referred to as a component) can
be reused (Wilde 1994). Components can range in
size, from individual code blocks to a suite of appli-
cations.

We are researching ways to reduce this cost by
creating visualisations of the static and dynamic in-
formation present in a component (Alonso & Frakes
2000), that can then be presented to developers who
are looking for an old solution to a new or old prob-
lem. While other costs of reuse do exist — notably
the time to search for potential candidate components
for reuse and the financial cost of purchasing reusable

Copyright (¢)2003, Australian Computer Society, Inc. This pa-
per appeared at The Australasian Symposium on Information
Visualisation, Adelaide, 2003. Conferences in Research and Prac-
tice in Information Technology, Vol 24. Tim Pattison and Bruce
Thomas, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

components — we base our discussions in this paper
solely on the cost of understanding.

Our goals are to identify what information is im-
portant in deciding if and how a component can be
reused, and develop tools to allow developers to create
and view visualisations of this information. We also
wish to to be able to easily distribute these resulting
visualisations, and allow for sharing of information
and easy and safe experimentation with components.
To achieve these goals, we need methods of collecting,
storing and transporting component information, as
well as a method of converting the collected informa-
tion into a visualisation format. As part of this, we
have developed a wish list of what we want to see
in software visualisations of reusable components, as
well as a wish list for the characteristics of the inter-
mediary format that would carry this information.

We have been working with widely-available Java
debugger libraries to collect information gathered
from developers’ experiences of using the component.
We have also been working with XML-based tech-
nologies for the encoding and transportation of this
information.

2 Code Reuse

The principle reasons for wanting to reuse code are to
save time and effort in both development and main-
tenance of quality software. This, the argument goes,
is achieved as a result of the reuser not having to de-
velop a new solution to an old problem. The reuser
may also, depending on how the act of reuse is imple-
mented, receive the benefit of accessing a common so-
lution, used in multiple places by possibly more than
one person. This benefit is demonstrated when any
improvements or fixes to the algorithm or technology
behind the solution are made. With a common so-
lution, improvements can be more easily propagated
to all the places the problem exists than if developers
had each created their own solution that needed indi-
vidually updating. This is true regardless of the size
of the component being reused.

Research in the field of code reuse has been con-
ducted for decades (McIllroy 1968), and ranges from
examining how to reuse code, to what makes code
reusable (Mili, Mili & Mili 1995), through to met-
rics to measure code reuse (Frakes & Terry 1996)
(Ferri, Pratiwadi, Rivera, Shakir, Snyder, Thomas,
Chen, Fowler, Krishnamurthy & Vo 1997). Software
developers do reuse code, examples of which are the
libraries that come with the Java Development Kit,
the act of copying and pasting code from one place
to another, and interacting with existing applications
(e.g. databases and browsers) to create new function-
ality. The very act of writing code by placing algo-
rithms inside methods, and invoking those methods



from more than one place is a simple example of code
reuse in action.

Code reuse can range from using code in a simi-
lar context to where it was originally used (and in-
tended for use by the code’s author), to using code
in a way the code’s author would never have thought
of or intended. In the latter case, the code may need
to be modified or extended in some way to fit the
requirements of the new context, but the assumption
is maintained that such modification or extension will
result in less time and effort being spent than if a new
solution had to be created from scratch.

3 A Brief Review of Software Visualisation

Software visualisation techniques have been de-
veloped for a variety of purposes (Ellershaw &
Oudshoorn 1994). These purposes include use as
pedagogical tools to teach Computer Science stu-
dents how algorithms work (Byrne, Catrambone &
Stasko 1999), use in visual debuggers to help correct
bugs in software (Mukherjea & Stasko 1994), through
to profiling large suites of applications to determine
efficiency, correctness and help during maintenance.

The field of software visualisation spans research
from algorithm animation (such as that demonstrated
in the 1981 video “Sorting Out Sorting” shown at
the SIGGRAPH conference of that year), to ways of
“pretty printing” source code to make code blocks
or keywords stand out more, or to make components
(typically packages and classes) easier to browse. This
latter approach is most commonly experienced by
the majority of developers through familiarity with
any reasonably modern software development envi-
ronment.

Software visualisations are created from static and
dynamic information. Static structures such as class
descriptions, inheritance hierarchies and dependency
hierarchies can be determined from analysis of the
source or binary files. Dynamic information, such as
method call sequences, field access/modification and
multi-threading can be determined by analysis of the
software’s behaviour during execution (Moe & Carr
2001), (Reiss & Renieris 2001).

Many software visualisation tools have been cre-
ated both in academic institutions and commercial
enterprises. These tools use a number of different
approaches to information retrieval and visualisation
(Price, Small & Baecker 1992), and also offer a num-
ber of different approaches to the problem of allowing
developers access to the creation and viewing process.

Some software visualisation tools allow for cus-
tomisable visualisations, whereas others will create
only one type of visualisation, or work with only one
class of application (e.g. networking, sorting algo-
rithms). Some tools require modification (called in-
strumentation) to the source code being visualised to
extract dynamic information, whereas other tools can
“spy” on applications executing (such as through de-
bugger tools, or through modified execution environ-
ment) without requiring such instrumentation. Some
tools allow developers to have highly interactive ex-
periences with the visualisations and to manipulate
the views presented (e.g. zoom, replay, focus, con-
trast two concurrent visualisations), whereas other
tools only allow for straight forward viewing. Fur-
thermore, some tools allow “real-time” live streaming
of visualisations as the code executes, whereas other
tools require all information to be gathered, filtered
and parsed before it can be shown to the developer.

A selection of tools that highlight some of these
features are Bloom (Reiss n.d.), XTango, Visor++

(Widjaja & Oudshoorn 1997) and Tarantula (Stasko
n.d.).

4 Profiles of a Software Visualiser and a Code
Reuser

The reason for using visualisation techniques is to fur-
ther enhance understanding of software. In this re-
spect code reusers are no different from anybody else
who may have need to use software visualisations (re-
ferred to here as software visualisers). However there
are different requirements for successful understand-
ing depending on your motivation for being interested
in the software.

4.1 Common Uses of Software Visualisation

Pedagogical-focused software visualisations for Com-
puter Science students provide information on how
the internals of an algorithm work (Byrne et al.
1999) (Naps, Bergin, Jimenez-Peris, McNally, Patino-
Martinez, Proulx & Tarhio 1997) (Wiggins 1998), and
may also show how certain language constructs work
together. The aim of this is to teach the software vi-
sualiser how to program, and effectively how to create
their own solutions (or versions of the algorithms).

Software visualisations created from large applica-
tions for the purposes of profiling, maintenance (Ball
& FEick 1996) or determining correctness provide dif-
ferent information. Most notably, often these profil-
ing tools work with very large data sets of static and
dynamic information, and must use different graphing
or abstracting techniques to show what is important
in a way that won’t overwhelm the software visualiser.

Research into software visualisations for under-
standing program traces does exist (Renieris & Reiss
n.d.) (Jerding & Stasko 1994), but much of this is
not focused specifically on reuse and the information
required in that process, and rather mentions main-
tenance as the driving factor.

4.2 Differences for Code Reusers

Code reusers, while also software visualisers them-
selves as far as our work is concerned, do differ in
some respects from the software visualisers in the first
two common uses mentioned in section 4.1.

While code reusers are interested in what a com-
ponent does, it will be of equal importance to under-
stand how to use that component. Algorithm anima-
tions, while often showing the details of the algorithm,
do not show which methods to invoke in the compo-
nent to store information, or to start execution, or to
extract key results. Code reusers can reasonably be
expected to know the language they are developing
in. Unlike students, they do not need to be shown
how the component was written, but instead how the
component is used. It may be more useful to a code
reuser to see the order in which to invoke public meth-
ods in a Networking component’s interface so as to set
up a server socket, than to see the specific white box
details as to how that server socket was set up.

Code reusers may also not have access to the un-
derlying source code to a reusable component. While
this can be a significant problem to a software visu-
aliser doing profiling or maintenance (given the needs
for possible corrections), a code reuser can still reuse
the component as long as they have access to a com-
piled version for the architecture they are on.

A code reuser is also approaching the reusable
component from the perspective of having it collabo-
rate with other components that it was possibly not
intended to be used with originally. This means that



the component’s external influences are important to
visualise as well, something that is often not men-
tioned directly in other research projects in software
visualisation.

4.3 Similarities for Code Reusers

Code reusers also share some common characteris-
tics with other software visualisers. For example code
reusers are, like software visualisers trying to under-
stand whether a component matches its specification,
interested in the side-effects and results of a compo-
nent. Visualisations for this purpose describe what
the component’s specification is. While other soft-
ware visualisers may be comparing these visualisa-
tion to a more thoroughly understood and concrete
original specification (as laid down during an analy-
sis/design phase), the code reuser will be comparing
it against the requirements of their new context, and
their own prepared specifications of the solution they
need. While the material being compared with is dif-
ferent, a lot of the information and ways it can be
displayed may be the same.

Likewise, code reusers may also be interested in
class/package hierarchies and the methods invoked
as a consequence of accessing the component’s public
interface. While other software visualisers profiling
software for efficiencies and correctness are interested
in seeing that the right method gets invoked, and that
the correct number of invocations occur, code reusers
are also interested in this information for the purpose
of code reuse. One approach to code reuse mentioned
in section 2 is to extend an existing solution through
inheritance and/or overloading methods. Knowledge
of when methods get called will enable a code reuser
to better understand if a solution can be extended,
and if so, which classes or methods need to be de-
rived.

As well as this, the question of efficiency and re-
source usage may figure strongly in a component’s
suitability for reuse in the new context. These issues
are also of importance to software visualisers doing
profiling, although for slightly different reasons (i.e.
correctness versus suitability).

4.4 Three Considerations for Code Reusers

Outside of the considerations of cost and of finding
candidate components for reuse in the first place, we
believe the main areas that a code reuser would be
interested in — from a perspective of requiring un-
derstanding — are what the component does, how the
component works and, if it does match the new re-
quirements, then how the component can be reused
and whether it needs to be modified.

5 An Architecture for Visualising Reusable
Components

We are developing tools for creating and interacting
with visualisations of reusable components. To create
a context for our later discussions on what informa-
tion we’d like to see in our visualisations, and how
we’d like it to be organised, we will briefly discuss
some of the key features of our visualisation tools.
A simple overview of the architecture can be seen in
figure 1.

5.1 Test Driver

As touched upon earlier at the end of our introduction
to this paper, we are creating visualisations of devel-
opers’ experiences with using a reusable component.

Part of this requires that we provide a platform on
which developers can gain that first-hand experience
of using a component.

A component is often not an entire application in
its own right. In our research, we are working with
Java components at the class level. As many com-
ponents cannot be executed in isolation (such as for
the lack of a public static void main method in the
case of Java components), we have developed a tool
called Test Driver using the Java Reflection API. The
test driver allows developers to specify a sequence
of method invocation and field access/modifications,
and to then execute this sequence on the component.
This approach does not work for all components, with
some graphical components requiring a more compli-
cated setup before they can be used to interface with
the developer. However for many non-graphical com-
ponents this can be a useful method in its own right of
gaining a preliminary understanding of using a com-
ponent, and in what the results and side-effects of
certain actions are.

5.2 SpyApp

The SpyApp tool is responsible for gathering much of
the information required for the visualisations. While
the test driver can gather some information, such as
the sequence of instructions given to it by the de-
veloper and static class information, the SpyApp is
responsible for gathering information such as method
call traces within the component, resource usage, and
most of the dynamic runtime information sought.

The SpyApp can do this while avoiding the need to
instrument the reusable component source code, re-
moving the need for the source code to be available.
The static information gathered by the Test Driver
can be done so from .class files, and by being able
to gather dynamic information purely from executing
.class files as well, we allow visualisation of reusable
components where the source code has not been dis-
tributed.

SpyApp uses Java debugging libraries such as the
Java Debugger Interface (JDI) to watch for events
in the Java Virtual Machine. When these events oc-
cur, SpyApp then collects event information through
calls to the JDI, and sends the collected information
to the filesystem or a database as output. A simi-
lar approach using the native Java Virtual Machine
Debugger Interface JVMDI library for Java has been
used by (Reiss & Renieris 2000).

This output can then be filtered for relevancy, and
the format of the information is the subject of our first
wish-list mentioned at the beginning of this paper.

5.3 Transformer

The Transformer tool is responsible for converting the
information gathered by SpyApp and Test Driver into
a format that can be easily rendered by animation
display tools.

We are interested in developing tools that allow for
a customisable and extendible set of different visual-
isations, so the Transformer tool can have its conver-
sion process configured to create these different visu-
alisations. This configuration and conversion process
does require some prior knowledge of the component,
and its important features and uses (i.e. knowing
what to focus on in the visualisation). This means
that currently any configuration is better left to ex-
perienced users of that component who wish to create
visualisations for other developers.

Transformer outputs the resulting information and
stores it either in a database or directly in the filesys-



Information

H

Test Driver

Transformer

Visualisation

2

SpyApp

Viewer/Renderer

Information

Figure 1: An architecture for visualising reusable components. The data outputted by the Test Driver and the
SpyApp is the subject of this paper. We are interested in the information present in the data, and also how

the data is handled.

tem. The format of the output is the subject of one
of our wish lists and is now discussed in more depth.

6 The Wish list for Information To Be Visu-
alised

We are interested in using visualisations to guide a
developer’s decision as to whether a component is
reusable in the developer’s current context. To create
visualisations that are useful to developers, we must
give some thought as to what should be shown. We
have briefly outlined some of the intentions and char-
acteristics of a code reuser in section 4. We will now
discuss our wish list for what information we would
like to see shown in software visualisations of reusable
components. Not all the information would necessar-
ily be presented in any one specific visualisation, how-
ever as we are looking at tools for creating customis-
able and extendible visualisations, this information
should be available if required.

We have split this list into three sections, mirror-
ing the different criteria that a code reuser may go
through when deciding if a given component is ap-
propriate for reuse, and if so, how it can be reused.
These sections list the information we would like to
see visualised to determine what a component does,
how a component works, and how a component can
be reused.

All of these categories could benefit from both
static and dynamic visualisations. In many cases,
animated visualisations could track the change in
the various characteristics and performance measures
during the course of execution. As some reusable
components are accessed through a sequence of calls
to the public interface rather than just a single call,
animations could show how the different events and
states evolve at key moments in the sequence.

6.1 What Does The Component Do?

To decide whether a potentially reusable component
is useful in the new context, a developer must know
what it is that the component does. We treat the
component in this section as a black box, and are
interested in the external side-effects and the results
that occur as a consequence of interacting with the
component’s public interface.

We consider the following elements important in
understanding what the component does:

e Author and/or user descriptions.

e Actual results and side-effects of a sequence of
accesses to the public interface.

e Data sent or requested, external to the compo-
nent.

e User input/output required during execution.

We shall now expand on these points in more
depth.

6.1.1 Author/User Description

A component’s author should know the specific de-
tails of what the component does. Any information
they can provide, such as through traditional text-
based documentation, will be of use in understanding
what the component does. Similarly, regular users of
the component will also have an understanding of the
component’s capabilities, and any advice or feedback
they can give on the component can be useful when
determining its appropriateness in the code reuser’s
new context.

Text based is the most common form of documen-
tation currently available, and it should be comple-
mented by visualisations, rather than be replaced en-
tirely. Some visual techniques could be applied to
the descriptions, to aid readability and understand-
ing, but peoples’ reports on their experiences of com-
ponents remains a powerful way of sharing knowledge.

6.1.2 Results & Side-Effects

The results of executing certain sequences of method
calls on a component’s public interface, or the side-
effects of these sequences on other components’ data
or the component’s own state, will affect its applica-
bility for reuse in a new context.

The results in some cases will determine whether
the functionality provided by the component matches
what is needed by the code reuser. The side-effects
may help to show whether the component can work
together with other components without compromis-
ing their functionality. They may also show whether
a particular sequence of interactions leaves the com-
ponent in a correct state for any future required se-
quences to also work. This latter point may be espe-
cially important if the component to be reused will
be used multiple times. If this is the case, each inter-
action with the component would need to leave it in
a usable state for the next interaction.

6.1.3 Sent/Requested Data

If a component is to be reused, then any information
sent or requested by that component to such enti-
ties as a network, filesystem or database, needs to



be handled in the new context. It is important that
the code reuser understands the requirements and ac-
tions of the component with regards to the external
environment,.

This ensures that any components whose needs
can not be met (either directly or through relatively
minor modification) by the new context, can be dis-
carded from the selection process.

This represents the results and side-effects external
to the immediate application the component would be
reused in, except for direct user input/output which
is discussed in section 6.1.4.

6.1.4 User Input/Output

Should a component require interaction with a user to
perform its functionality, then this needs to be under-
stood by a code reuser if they are to make an informed
decision as to its appropriateness in a new context.
Specifically, the code reuser may need to know what
information is required of the user, what information
is given to the user, what the method of interaction
is, and what environment (i.e. graphical, command
line) is required for the interaction to take place.

6.2 How Does The Component Work?

We approached the question of what the component
does by treating it as a black box. This may help in
deciding whether the functionality available can be
made to meet the requirements of the new context,
but there is also the question of how the component
works. This is important as the resource or permis-
sion requirements of operation may be prohibitive in
the new context, and rule the component out as a
candidate for reuse. There is also the possibility of
extending or modifying the behaviour of the compo-
nent to meet any new requirements. Understanding
how the internals of the components work may open
up opportunities for modifying its behaviour to what
is required by replacing sub-components or overload-
ing methods.

We now treat the component as a white box, and
look at what internal information could be useful to
visualise:

e Author and/or user descriptions.

e System permissions.

Other software applications & libraries.

e Hardware resource usage.

e Execution traces.

e Multi-threading and synchronisation.

e Timing.

We shall now expand on these points in more

depth.

6.2.1 Author/User Descriptions

Similar to the author/user descriptions mentioned
in section 6.1.1, authors and users are well placed
to impart valuable knowledge of how a component
works. Visualisations aimed at promoting under-
standing how a component works should incorporate
feedback from the author and users.

6.2.2 System Permissions

The system permissions required by a component, af-
fect its appropriateness for reuse in a given situation.
Some environments may restrict permissions for secu-
rity reasons, e.g. untrusted Java applets in browsers,
and deny a component certain permissions. Describ-
ing what permissions a component requires allows the
code reuser to make an informed decision regarding
its usefulness. This ties in with section 6.1.3, where
the data being sent/requested was identified as useful
to visualise.

This could also identify what files are accessed or
modified, or which servers and ports are accessed on
the network. Other possible permissions could in-
clude such considerations as who the component must
execute as, an example being a component that needs
to execute as a superuser.

6.2.3 Other
braries

Software Applications & Li-

Should a component require other software to fulfill
its functionality, then visualising this information will
enable a code reuser to better understand whether
that component is appropriate for reuse. Visualising
the information may help to identify the specifics of
what software is required, why, and where. A code
reuser can then investigate from a position of knowl-
edge as to whether this other software is available and
usable in the new context.

6.2.4 Hardware Resource Usage

The performance of a component may make it pro-
hibitively expensive to reuse in a new context. If the
new context requires that functionality be achieved
within fixed parameters, such as in a certain time
frame, or with less than a certain amount of CPU us-
age, or within certain boundaries of filesystem access
or network traffic, then candidate reusable compo-
nents should be measured against these criteria.

Visualising this information gives the code reuser a
better understanding of the appropriateness of a code
component within the restrictions placed by the new
context.

6.2.5 Execution Traces

One possible approach to reuse is to overload cer-
tain methods of a component, or extend classes within
the component, to modify the existing functionality
to what is required. Visualising what methods get
called, on what classes, and when, may give the code
reuser a better understanding as to what methods or
classes need modifying to change the behaviour. This
relates primarily to the execution hidden by the pub-
lic interface of the component.

Tracing the execution internal to a component in-
volves capturing such information as method calls
(Renieris & Reiss n.d.), method returns, field ac-
cesses, field modifications, object creation and object
deletion. By visualising this information the code
reuser can gain a better understanding of potential
consequences and alternative executions that can be
created by overloading or replacing certain parts of
the component.

6.2.6 Multi-Threading & Synchronisation

Issues of threading, synchronisation, resource shar-
ing and deadlock avoidance are important factors in
deciding whether a component is reusable in a new



context. While a component may reasonably be ex-
pected to work correctly by itself or within its orig-
inal context, identifying its use of threads and any
requirements or monopolising of resources may high-
light problems in working with other components cur-
rently in the new context.

As well as this, a component’s reliance on threads
may make it unsuitable for a particular architec-
ture because the architecture may either not support
multi-threading or supports it in a fashion inconsis-
tent with the model the component uses.

Information regarding this can be derived from
analysing static source code, however dynamic infor-
mation gained at runtime from viewing the threads
and synchronisation can also be useful as it can show
the sequencing of events and the amount of time spent
holding or waiting on a resource.

Threading and synchronisation data may comprise
a large amount of information. Using visualisation
techniques to highlight the important parts of this
information can help the code reuser make a more in-
formed decision about the reusable component’s abil-
ity to work in collaboration with other components.

6.2.7 Timing

While hardware usage may measure the component’s
performance with respect to its use of computer re-
sources, the new context may also place other restric-
tions on what components may fit in it. One such
restriction may be time, with the component need-
ing to complete some operation within a certain time
frame for the result to be useful. An example of this
would be a component to be used in a real-time ap-
plication.

Visualising the time line of execution can help a
code reuser measure the component’s performance
against what is required, and against other poten-
tially reusable components fulfilling the same func-
tionality.

6.3 How Can The Component Be Reused?

When a developer has decided that what a component
does (or can be easily modified to do) is what they
need, and that how it does it is acceptable to them,
they will still need to understand how to reuse it.

A simple example of this would be that we may
know that a network component allows us to create
network connections to servers, and that it does it
through using the underlying native socket libraries,
but we still need to know in which order to execute
the various methods in the public interface to get the
job done.

This touches on several of the wishes in section 6.2.
However whereas that list stated what we wanted to
know about the originally intended operation of the
component, here we are more interested in how it can
be used (or modified) in a new context that it may
not specifically have been designed for.

The three categories of information we see as be-
ing important in understanding how to reuse a com-
ponent are:

e Example uses of the component through it’s pub-
lic interface.

e Example extensions of the component through
inheritance and overriding methods.

e Details of how to install any other software re-
quired by the component.

We shall now expand on these points in more
depth.

6.3.1 Example Uses

Examples showing previous uses of the public inter-
face of a component can show us how to link in the
component to other code in the new context. This
can also involve showing how to set up the state of
objects that are required to be passed to the reusable
code before it’s functionality can be invoked.

6.3.2 Example Extensions

While reusing code may consist of simply plugging
in the old code into a new project and interacting
with it through the public interface, it may also in-
volve extending the currently available functionality
to match the new requirements. This approach could
use a mechanism such as inheritance to extend certain
classes or methods within the reusable component, to
borrow what is already there and add on the extra ca-
pabilities that are needed. Example extensions could
show which classes/methods can be extended, and the
potential side effects of doing this. They could also
show how extending classes whose objects are used
as parameters or global variables by the component
can modify the behaviour of the component, with the
intention of meeting the required new functionality.

6.3.3 Installation Details

Another barrier to successful reuse is the time and ef-
fort involved in installing the component for use in the
new project. For some components, it may be a com-
paratively easy task of downloading the component
and including the file or files in the search path for the
compiler or runtime environment (such as the class
path/source path variables in Java). However other
components may need more complex installation pro-
cedures. These could include recompilation for the
local architecture, and downloading of other ancil-
lary components that the reused component needs
to work. Clearly available information on how to go
about doing this would help to reduce the time and
effort required in the reuse process. This is again
an example where already available (and predomi-
nately text-based) documentation such as README
files can be complimented and incorporated by visu-
alisation techniques.

7 The Wish list for Transporting Information
for Visualisation

Having decided what we want to see, we need to first
gather the information from SpyApp and transfer it
to the Transformer, so that it can be converted into
a visualisation.

Some software visualisation researchers have de-
signed their visualisation architectures so that the vi-
sualisation tool is built directly into the information
gathering tool. In other cases, the visualised code
is instrumented to include calls to the visualisation
library. We wish to remove the tight coupling be-
tween the source and destination, by transferring the
information in an independent, consistent format - so
that SpyApp and the Transformer can be replaced
and reused in different circumstances.

This will solve a common problem, where the cap-
tured information is abstracted too soon. The exer-
cise of executing and exploring a component involves
the expense of time and effort. If a particular visuali-
sation (e.g. a sequence diagram) was created directly
from this initial exploration, then if someone decided
that they wanted another view on the component (e.g.
an annotated description of the public interface, using



colour and numbering to highlight important meth-
ods and access sequences), the second visualisation
would either need a new exploration (and hence more
time and effort), or be created from the first visualisa-
tion. Because a specific visualisation abstracts away
information unnecessary in that visualisation, infor-
mation relevant to other types of visualisation may
be difficult to extract, or not even present.

We have the need for an intermediary format for
the information gathered from a component, that can
be used to generate a visualisation. Our wish list for
this format is:

e Storable, and re-playable.
e Support live streaming to visualisation tools.

e Eagsily transportable over the Internet, using
widely accepted protocols and standards.

e Filterable, so that relevant information can be
extracted.

e Query-able for specific details within the overall
information store.

e Programming-language independent.
e Platform-independent.

e Scalable to large components and long visualisa-
tions.

We shall now expand on these points in more
depth.

7.1 Storable and Re-playable

Generating a program trace is costly, as it requires
the software visualiser to spend time executing and
exploring software components. At the time of ex-
ploration the software visualiser may not know what
kinds of visualisations to view, or the need to view
a different visualisation may become apparent at a
point in the future.

It should be possible to store the SpyApp trace
output on a filesystem or database, so that it can be
replayed in the future to produce a different visuali-
sation.

7.2 Live Streaming

Often, understanding software through visualisation
is an explorative process, where a software visualiser
will tinker with a component and view the changes
that the tinkering makes to the visualisation. There-
fore, the changes detected by the SpyApp may need
to be transferred directly to the Transformer as they
occur, rather than being sent at the close of execution.

Supporting live streaming may impose certain re-
strictions upon the representation of the data, for-
ward references should be avoided, so that the Trans-
former always has a complete snapshot at any point
in time.

7.3 Easily Transportable

As discussed in section 2, current visualisation re-
search is trending towards the delivery of visualisa-
tions over the internet. This imposes certain restric-
tions on the format of the data, so a file format should
be able to be transferred in a culture neutral repre-
sentation, preferably text, and preferably be able to
be fetched via a single HT'TP request.

7.4 Filterable

Due to the potential volume of data that a program
execution can produce, the data format should sup-
port an easy method of filtering, so that only relevant
information need be passed to the transformer. As
each transformer will have different criteria for rel-
evance, the filtration must be sufficiently flexible to
narrow the data to a sensible subset.

7.5 Query-able

The program trace information should be easily
queried, so that a transformer can efficiently request
subsets of information (e.g. “All types in this pro-
gram”, “All methods that call method X”). It is not
practical for a transformer to parse the trace each
time such a request occurs, nor is it sensible for each
transformer to convert the trace information into it’s
own database format.

7.6 Language Independence

As researchers, we work with a variety of program-
ming languages. This research began using C++, and
now uses Java. However there is sufficient similar-
ity between many object-oriented languages (C++,
Java, C#, VB.NET, Jade) that it makes sense for
the trace format to represent the execution of any of
these languages. Indeed, in an environment such as
Microsoft’s CLR, program development doesn’t nec-
essarily involve just one programming language.

Supporting multiple languages will also allow the
Transformers and subsequent Visualisations to be
reused as well, there is little difference between a C++
UML Sequence diagram and a Java one.

7.7 Platform Independence

Any architecture involving the internet, and platform
independent languages such as Java, should transfer
information in a platform-neutral manner. The trace
information viewed on a Unix machine should be iden-
tical to that on an Apple Macintosh.

7.8 Scalable

Execution traces can get large very quickly, if there
are a lot of method calls, object creation, or data
changes. The format chosen will need to be easily
used, filtered and queried, even when it scales up to
hundreds of megabytes.

8 Summary

We wish to create visualisations specific to three as-
pects of reusable code components. These aspects
are what does the component do, how does the com-
ponent do it, and how can the component be reused.
These visualisations would then be used to help fos-
ter understanding in developers as to how they could
save time and effort through the process of reusing
old code in new contexts.

To create visualisations we need to think about
what information should be visualised. We also need
to consider the details of extracting, storing and
transporting this information. In this paper we have
listed what we believe to be key categories for what
information should be available to visualisations, and
have discussed some of the characteristics of a data
transport format.



While significant research has been conducted
into creating software visualisations for understand-
ing software, especially for pedagogical or profiling
purposes, we believe the intentions of code reusers re-
quires extra information for a complete understand-
ing, and to aid in successful reuse.

Our aim is to further develop tools for gathering,
storing, transporting and converting static and dy-
namic component information into useful visualisa-
tions.

References

Alonso, O. & Frakes, W. (2000), Visualization of
reusable software assets, in ‘Sixth International
Conference on Software Reuse’.

Ball, T. & Eick, S. G. (1996), ‘Software visualization
in the large’, IEEE Computer 29(4), 33-43.
*citeseer.nj.nec.com/ball

Byrne, M., Catrambone, R. & Stasko, J. (1999),
‘Evaluating animations as student aids in learn-
ing computer algorithms’.
*citeseer.nj.nec.com/byrne99evaluating.html

Ellershaw, S. & Oudshoorn, M. (1994), ‘Program vi-
sualization - the state of the art’.
*citeseer.nj.nec.com/ellershaw94program.html

Ferri, R., Pratiwadi, R., Rivera, L., Shakir, M., Sny-
der, J., Thomas, D., Chen, Y., Fowler, G., Kr-
ishnamurthy, B. & Vo, K. (1997), ‘Software reuse
metrics for an industrial project’.
*citeseer.nj.nec.com/ferri97software.html

Frakes, W. & Terry, C. (1996), ‘Software reuse:
Metrics and models’, ACM Computing Surveys
28(2), 415-435.
*citeseer.nj.nec.com/frakes96software.html

Jerding, D. F. & Stasko, J. T. (1994), Using visu-
alization to foster object-oriented program un-
derstanding, Technical Report GIT-GVU-94-33,
Atlanta, GA, USA.
*citeseer.nj.nec.com/jerding94using.html

Mclllroy, M. D. (1968), Mass produced software com-
ponents, in P. Naur & B. Randell, eds, ‘Report
on a Conference of the NATO Science Commit-
tee’, pp. 138-150.

Mili, H., Mili, F. & Mili, A. (1995), ‘Reusing soft-
ware: Issues and research directions’, Software
Engineering 21(6), 528—-562.
*citeseer.nj.nec.com/mili95reusing. html

Moe, J. & Carr, D. A. (2001), Understanding dis-
tributed systems via execution trace data, in
‘Proceedings of the Ninth International Work-
shop on Program Comprehension’. ” cite-
seer.nj.nec.com/moeQlunderstanding.html”.

Mukherjea, S. & Stasko, J. T. (1994), ‘Toward vi-
sual debugging: Integrating algorithm anima-
tion capabilities within a source level debugger’,
ACM Transactions on Computer-Human Inter-
action 1(3), 215-244.

Naps, T., Bergin, J., Jimenez-Peris, R., McNally, M.,
Patino-Martinez, M., Proulx, V. & Tarhio, J.
(1997), Using the www as the delivery mecha-
nism for interactive, visualization-based instruc-
tional modules, in ‘Proc. of ACM ITiCSE’97’.
*citeseer.nj.nec.com/naps97using.html

Price, B. A., Small, I. S. & Baecker, R. M. (1992),
A taxonomy of software visualization, in ‘Proc.
25th Hawaii Int. Conf. System Sciences’.
*citeseer.nj.nec.com/price92taxonomy.html

Reiss, S. P. (n.d.), ‘Website -
http://www.cs.brown.edu/ spr/.

Reiss, S. P. & Renieris, M. (2000), Generating java
trace data, in ‘Java Grande’, pp. 71-77.
*citeseer.nj.nec.com/reiss00generating.html

Reiss, S. P. & Renieris, M. (2001), Encoding program
executions, in ‘International Conference on Soft-
ware Engineering’, pp. 221-230.
*citeseer.nj.nec.com/reiss0lencoding.html

Renieris, M. & Reiss, S. P. (n.d.), ALMOST: Explor-
ing program traces, pp. 70-77.
*citeseer.nj.nec.com/renieris99almost.html

Stasko, J. T. (n.d.), ‘Website - tarantula:
Fault localization via visualization’,
http://www.cc.gatech.edu/aristotle/ Tools/tarantula/.

Widjaja, H. & Oudshoorn, M. (1997), ‘Concurrent
object oriented programming — a visualisation
challenge’.
*citeseer.nj.nec.com/widjaja97concurrent.html

bloom’,

Wiggins, M. (1998), An overview of program visu-
alization tools and systems, in ‘ACM Southeast
Regional Conference’, ACM Press, pp. 194-200.

Wilde, N. (1994), ‘Faster reuse and maintenance us-
ing software reconnaissance’.
*citeseer.nj.nec.com/wilde94faster.html



