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Abstract

This paper studies how to build a decision tree clas-
sifier under the following scenario: a database is ver-
tically partitioned into two pieces, with one piece
owned by Alice and the other piece owned by Bob.
Alice and Bob want to build a decision tree classi-
fier based on such a database, but due to the privacy
constraints, neither of them wants to disclose their
private pieces to the other party or to any third party.

We present a protocol that allows Alice and Bob
to conduct such a classifier building without having to
compromise their privacy. Our protocol uses an un-
trusted third-party server, and is built upon a useful
building block, the scalar product protocol. Our so-
lution to the scalar product protocol is more efficient
than any existing solutions.
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1 Introduction

Success in many endeavors is no longer the result of
an individual toiling in isolation; rather success is
achieved through collaboration, team efforts, or part-
nerships. In the modern world, collaboration is im-
portant because of the mutual benefit it brings to the
parties involved. Sometimes, such collaboration even
occurs between competitors, mutually untrusted par-
ties, or between parties that have conflicts of interests,
but all parties are aware that the benefit brought by
such collaboration will give them the advantage over
others. For this kind of collaboration, data privacy
becomes extremely important: all parties of the col-
laboration promise to provide their private data to
the collaboration, but none of them wants the others
or any third party to learn much about their private
data.

Currently, to solve the above problem, a com-
monly adopted strategy is to assume the existence
of a trusted third party. In today’s dynamic and
sometimes malicious environment, making such an as-
sumption can be difficult or in fact not feasible. Solu-
tions that do not assume the third party are greatly
desired.

In this paper, we study a very specific collabora-
tion, the data mining collaboration: two parties, Al-

∗Portions of this work were supported by Grant ISS-0219560
from the National Science Foundation, and by the Center for Com-
puter Application and Software Engineering (CASE) at Syracuse
University.
Copyright c©2002, Australian Computer Society, Inc. This pa-
per appeared at IEEE International Conference on Data Min-
ing Workshop on Privacy, Security, and Data Mining, Maebashi
City, Japan. Conferences in Research and Practice in Informa-
tion Technology, Vol. 14. Chris Clifton and Vladimir Estivill-
Castro, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

ice and Bob, each having a private data set, want to
conduct data mining on the joint data set that is the
union of all individual data sets; however, because of
the privacy constraints, no party wants to disclose its
private data set to each other or any third party. The
objective of this research is to develop efficient meth-
ods that enable this type of computation while min-
imizing the amount of the private information each
party has to disclose to the other. The solution to
this problem can be used in situations where data
privacy is a major concern.

Data mining includes various algorithms such as
classification, association rule mining, and clustering.
In this paper, we focus on classification. There are
two types of classification between two collaborative
parties: Figure 1.a (suppose each row represents a
record in the data set) shows the data classification
on the horizontally partitioned data, and Figure 1.b
shows the data classification on the vertically parti-
tioned data. To use the existing data classification al-
gorithms, on the horizontally partitioned data, both
parties needs to exchange some information, but they
do not necessarily need to exchange each single record
of their data sets. However, for the vertically parti-
tioned data, the situation is different. A direct use
of the existing data classification algorithms requires
one party to send its data (every record) to the other
party, or both parties send their data to a trusted cen-
tral place (such as a super-computing center) to con-
duct the computation. In situations where the data
records contain private information, such a practice
will not be acceptable.

In this paper, we study the classification on the
vertically partitioned data, in particular, we study
how to build a decision tree classifier on private (ver-
tically partitioned) data. In this problem, each single
record is dividied into two pieces, with Alice know-
ing one piece and Bob knowing the other piece. We
have developed a method that allows them to build a
decision tree classifier based on their joint data.

2 Related Work

Privacy Preserving Data Mining. In early work
on such privacy preserving data mining problem Lin-
dell and Pinkas (Lindell & Pinkas 2000) propose a
solution to the privacy preserving classification prob-
lem using the oblivious transfer protocol, a powerful
tool developed by the secure multi-party computa-
tion studies. The solution, however, only deals with
the horizontally partitioned data, and targets only for
the ID3 algorithm (because it only emulates the com-
putation of the ID3 algorithm). Another approach
for solving the privacy preserving classification prob-
lem was proposed by Agrawal and Srikant (Agrawal
& Srikant 2000) and also studied in (Agrawal &
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Figure 1: Privacy Preserving Data Mining

Aggarwal 2001). In this approach, each individual
data item is perturbed and the distributions of the all
data is reconstructed at an aggregate level. The tech-
nique works for those data mining algorithms that
use the probability distributions rather than individ-
ual records. An example of classification algorithm
which uses such aggregate information is also dis-
cussed in (Agrawal & Srikant 2000).

There has been research considering preserving
privacy for other type of data mining. For instance,
Vaidya and Clifton proposed a solution (Vaidya &
Clifton 2002) to the privacy preserving distributed
association mining problem.

Secure Multi-party Computation. The prob-
lem we are studying is actually a special case of a
more general problem, the Secure Multi-party Com-
putation (SMC) problem. Briefly, a SMC problem
deals with computing any function on any input, in
a distributed network where each participant holds
one of the inputs, while ensuring that no more in-
formation is revealed to a participant in the compu-
tation than can be inferred from that participant’s
input and output (Goldwasser 1997). The SMC prob-
lem literature is extensive, having been introduced by
Yao (Yao 1982) and expanded by Goldreich, Micali,
and Wigderson (Goldreich, Micali & Wigderson 1987)
and others (Franklin, Galil & Yung 1992). It has been
proved that for any function, there is a secure multi-
party computation solution (Goldreich 1998). The
approach used is as follows: the function F to be
computed is first represented as a combinatorial cir-
cuit, and then the parties run a short protocol for
every gate in the circuit. Every participant gets cor-
responding shares of the input wires and the output
wires for every gate. This approach, though appeal-
ing in its generality and simplicity, means that the
size of the protocol depends on the size of the cir-
cuit, which depends on the size of the input. This
is highly inefficient for large inputs, as in data min-
ing. It has been well accepted that for special cases of
computations, special solutions should be developed
for efficiency reasons.

3 Decision-Tree Classification Over Private
Data

3.1 Background

Classification is an important problem in the field of
data mining. In classification, we are given a set of
example records, called the training data set, with
each record consisting of several attributes. One of
the categorical attributes, called the class label, in-
dicates the class to which each record belongs. The
objective of classification is to use the training data

set to build a model of the class label such that it can
be used to classify new data whose class labels are
unknown.

Many types of models have been built for classi-
fication, such as neural networks, statistical models,
genetic models, and decision tree models. The deci-
sion tree models are found to be the most useful in
the domain of data mining since they obtain reason-
able accuracy and they are relatively inexpensive to
compute. Most decision-tree classifiers (e.g. CART
and C4.5) perform classification in two phases: Tree
Building and Tree Pruning. In tree building, the de-
cision tree model is built by recursively splitting the
training data set based on a locally optimal criterion
until all or most of the records belonging to each of
the partitions bear the same class label. To improve
generalization of a decision tree, tree pruning is used
to prune the leaves and branches responsible for clas-
sification of single or very few data vectors.

3.2 Problem Definition

We consider the scenario where two parties, Alice and
Bob, each having a private data set (denoted by Sa

and Sb respectively), want to collaboratively conduct
decision tree classification on the union of their data
sets. Because they are concerned about the data’s pri-
vacy, neither party is willing to disclose its raw data
set to the other. Without loss of generality, we make
the following assumptions on the data sets Sa and Sb

(the assumptions can be achieved by pre-processing
the data sets Sa and Sb, and such pre-processing does
not require one party to send its data set to the other
party):

1. Sa and Sb contain the same number of data
records. Let N represent the total number of data
records.

2. Sa contains some attributes for all records, Sb

contains the other attributes. Let n represent
the total number of attributes.

3. Both parties share the class labels of all the
records and also the names of all the attributes.

Problem 3.1 (Privacy-preserving Classifica-
tion Problem) Alice has a private training data set
Sa and Bob has a private training data set Sb, data
set [Sa ∪ Sb] is the union of Sa and Sb (by vertically
putting Sa and Sb together so that the concatenation
of the ith record in Sa with the ith record in Sb

becomes the ith record in [Sa ∪ Sb]). Alice and Bob
want to conduct the classification on [Sa ∪ Sb] and
finally build a decision tree model which can classify
the new data not from the training data set.



3.3 Tree Building

3.3.1 The Schemes Used To Obtain The In-
formation Gain

There are two main operations during tree building:
(1) evaluation of splits for each attribute and selection
of the best split and (2) creation of partitions using
the best split. Having determined the overall best
split, partitions can be created by a simple application
of the splitting criterion to the data. The complexity
lies in determining the best split for each attribute.

A splitting index is used to evaluate the “good-
ness” of the alternative splits for an attribute. Sev-
eral splitting schemes have been proposed in the
past (Rastogi & Shim 2000). We consider two com-
mon schemes: the entropy and the gini index . If
a data set S contains examples from m classes, the
Entropy(S) and the Gini(S) are defined as follow-
ings:

Entropy(S) = −
m∑

j=1

Pj log Pj (1)

Gini(S) = 1−

m∑

j=1

P 2
j (2)

where Pj is the relative frequency of class j in S.
Based on the entropy or the gini index, we can com-
pute the information gain if attribute A is used to
partition the data set S:

Gain(S, A) = Entropy(S)−
∑

v∈A

(
|Sv |

|S|
∗Entropy(Sv))

(3)

Gain(S, A) = Gini(S)−
∑

v∈A

(
|Sv |

|S|
∗Gini(Sv)) (4)

where v represents any possible values of attribute A;
Sv is the subset of S for which attribute A has value
v; |Sv | is the number of elements in Sv; |S| is the
number of elements in S.

3.3.2 Terminology and Notation

For convenience, we define the following notations:

1. Let Sa represent Alice’s data set; and let Sb rep-
resent Bob’s data set.

2. We say node Â is well classified if Â contains
records that belong to the same class; we say Â

is not well classified if Â contains records that do
not belong to the same class.

3. Let B represent an array that contains all of Alice
and Bob’s attributes and B[i] to represent the ith
attribute in B.

3.3.3 Decision Tree Building Procedure

The following is the procedure for building a decision
tree on (Sa, Sb).

1. Alice computes information gain for each at-
tribute of Sa. Bob computes information gain
for each attribute of Sb. Initialize the root to be
the attribute with the largest information gain

2. Initialize queue Q to contain the root
3. While Q is not empty do {

4. Dequeue the first node Â from Q
5. For each attribute B[i] (for i = 1, . . . , n),

evaluate splits on attribute B[i]

6. Find the best split among these B[i]’s

7. Use the best split to split node Â into Â1 ,
Â2, . . . , Âk

8. For i = 1, . . . , k, add Âi to Q if Âi is not well
classified

9. }

3.3.4 How to Find the Best Split For At-

tribute Â

For the simplicity purpose, we only describe the En-
tropy splitting scheme, but our method is general, and
can be used for Gini Index and other similar splitting
schemes.

To find the best split for each node, we need to
find the largest information gain for each node. Let S
represent the set of the data belonging to the current
node Â. Let R represent the set of requirements that
each record in the current node has to satisfy.

To evaluation the information gain for the at-
tribute B[i], if all the attributes involved in R and
B[i] belong to the same party, this party can find the
information gain for B[i] by itself. However, except
for the root node, it is unlikely that R and B[i] be-
long to the same party; therefore, neither party can
compute the information gain by itself. In this case,
we are facing two challenges: one is to compute En-
tropy(S), and the other is to compute Gain(S, B[i])
for each candidate attribute B[i].

First, let us compute Entropy(S). We divide R into
two parts, Ra and Rb, where Ra represents the sub-
set of the requirements that only involve Alice’s at-
tributes, and Rb represents the subset of requirements
that only involve Bob’s attributes. For instance, in
Figure 2, suppose that S contains all the records
whose Outlook = Rain and Humidity = High, so Ra

= {Outlook = Rain} and Rb = {Humidity = High}.
Let Va be a vector of size N . Va(i) = 1 if the ith

record satisfies Ra; Va(i) = 0 otherwise. Because Ra

belongs to Alice, Alice can compute Va from her own
share of attributes. Similarly, let Vb be a vector of
size N . Vb(i) = 1 if the ith data item satisfies Rb;
Vb(i) = 0 otherwise. Bob can compute Vb from his
own share of attributes. Let Vj be a vector of size N ,
Vj(i) = 1 if the ith data item belongs to class j; Vj(i)
= 0 otherwise. Both Alice and Bob can compute Vj .

Notes that a nonzero entry of V = Va ∧ Vb (i.e.
V (i) = Va(i) ∧ Vb(i) for i = 1, . . . , N) means the cor-
responding record satisfies both Ra and Rb, thus be-
longing to partition S. To build decision trees, we
need to find out how many entries in V are non-zero.
This is equivalent to computing the scalar product of
Va and Vb:

Va · Vb =
N∑

i=1

Va(i) ∗ Vb(i) (5)

However, Alice should not disclose her private data
Va to Bob, neither should Bob. We have developed
a Scalar Product protocol (Section 4) that enables
Alice and Bob to compute Va · Vb without sharing
information between each other.

After getting Va, Vb, and Vj , we can now compute

P̂j , where P̂j is the number of occurrences of class j
in partition S.

P̂j = Va · (Vb ∧ Vj) = (Va ∧ Vj) · Vb (6)



After knowing P̂j , we can compute |S| =
∑n

j=1 P̂j

and Pj , the relative frequency of class j in S:

Pj =
P̂j

|S|
(7)

Therefore, we can compute Entropy(S) using
Equation (1). We repeat the above computation for
partition Sv to obtain |Sv| and Entropy(Sv) for all
values v of attribute B[i]. We then compute Gain(S,
B[i]) using Equation (3).

The above process will be repeated until we get
the information gain for all attributes B[i] for i =
1, . . . , n. Finally, we choose attribute B[k] for the par-
tition attribute for the current node of the tree, where
Gain(S, B[k]) = max{Gain(S, B[1]), . . . , Gain(S,
B[n])}.

We use an example to illustrate how to calculate
the information gain using entropy (using gini index
is similar). Figure 2 depicts Alice’s and Bob’s raw
data, and S represents the whole data set.

Alice can compute Gain(S, Outlook):

Entropy(S)

= − 3
5 log( 3

5 ) − 2
5 log( 2

5 )

= 0.971

Gain(S, Outlook) = Entropy(S)

- 2
5Entropy(S, Sunny)- 3

5Entropy(S, Rain)

= 0.42

Bob can compute Gain(S, Humidity) and
Gain(S, Wind):

Entropy(S) = 0.971

Gain(S, Humidity) = Entropy(S)

− 3
5Entropy(S, High)− 2

5Entropy(S, Normal)

= 0.02

Gain(S, Wind) = Entropy(S)
− 3

5Entropy(S, Weak) − 2
5Entropy(S, Strong)

= 0.42

Alice and Bob can exchange these values and se-
lect the biggest one as the root. Suppose they choose
Outlook as the root node, we will show how to com-
pute Gain(SRain, Humidity) in order to build the sub
trees. Where SRain is the set of data whose values of
Outlook attribute are Rain.

Alice computes vector Va(Rain) where she sets the
value to 1 if the value of attribute outlook is Rain;
she sets the value to 0 otherwise. She then computes
vector Va(Rain No), where she sets the value to 1 if
the value of attribute outlook is Rain and the class
label is No; she sets the value to 0 otherwise. Simi-
larly, she computes vector Va(Rain Y es), where she
sets the value to 1 if the value of attribute outlook is
Rain and the class label is Yes; she sets the value to
0 otherwise. Therefore, Alice obtains:

Va(Rain) = (0, 0, 1, 1, 1)T

Va(Rain No) = (0, 0, 0, 0, 1)T

Va(Rain Y es) = (0, 0, 1, 1, 0)T

Bob computes Vb(High) vector, where he sets the
value to 1 if the value of attribute Humidity is High;
he sets the value to 0 otherwise. Similarly Bob com-
putes Vb(Normal) vector, where he sets the value to
1 if the value of attribute Humidity is Normal; he sets
the value to 0 otherwise. Therefore, Bob obtains:

Vb(High) = (1, 1, 1, 0, 0)T

Vb(Normal) = (0, 0, 0, 1, 1)T

Gain(SRain, Humidity) = Entropy(SRain)

−
|Sv=High|
|SRain| Entropy(SRain, High)

− |Sv=Normal|
|SRain| Entropy(SRain, Normal)

Since Alice knows all the necessary information
to compute Entropy(SRain), Alice can compute it by

herself. In what follows, P̂No is the number of oc-
currences of class No in partition SRain; P̂Y es is the
number of occurrences of class Yes in partition SRain.

|SRain| = 3

Entropy(SRain)

= − P̂No

|SRain| log( P̂No

|SRain| )

− P̂Y es

|SRain| log( P̂Y es

|SRain| )

= − 1
|3 log( 1

3 ) − 2
3 log( 2

3 )

= 0.918

In order to compute Entropy(SRain,High), Al-
ice and Bob has to collaborate because Alice knows
SRain, but knows nothing about whether the Humid-
ity is High or not, while Bob knows the Humidity
attribute, but knows nothing about which record be-
long to SRain. In what follows, P̂No is the number of
occurrences of class No in partition SRain when Hu-
midity = High; P̂Y es is the number of occurrences of
class Yes in partition SRain when Humidity = High.



Day                   Outlook             Play Ball                             Day               Humidity              Wind                Play Ball

D1                   Sunny                    No                                 D1                        High                 Weak                 No

D2                     Sunny                    No                                 D2                       High                   Strong             No

D5                      Rain                       No                                

D4                      Rain                       Yes                               D4                      Normal               Weak                Yes

D5                     Normal                Strong                No

Alice                                                                                                        Bob

D3                     Rain                       Yes                                D3                       High                  Weak                Yes

Figure 2: The Original Data Set

|Sv=High| = Va(Rain) · Vb(High) = 1

P̂No = Va(Rain No) · Vb(High) = 0

P̂Y es = Va(Rain Y es) · Vb(High) = 1

Entropy(SRain, High)

= − P̂No

|Sv=High| log( P̂No

|Sv=High| )

− P̂Y es

|Sv=High| log( P̂Y es

|Sv=High| )

= 0

Similarly, Alice and Bob can compute
Entropy(SRain, Normal). In what follows, P̂No

is the number of occurrences of class No in partition
SRain when Humidity = Normal; P̂Y es is the number
of occurrences of class Yes in partition SRain when
Humidity = Normal.

|Sv=Normal| = Va(Rain) · Vb(Normal) = 2

P̂No = Va(Rain No) · Vb(Normal) = 1

P̂Y es = Va(Rain Y es) · Vb(Normal) = 1

Entropy(SRain, Normal)

= − P̂No

|Sv=Normal|
log( P̂No

|Sv=Normal|
)

− P̂Y es

|Sv=Normal|
log( P̂Y es

|Sv=Normal|
)

= 1

Therefore, they can get

Gain(SRain, Humidity) = 0.252

Notice that the above computation is based on
a series of secure scalar product protocols, which
guarantees that Alice’s private data (Va(Rain),
Va(Rain No), and Va(Rain Y es)) are not disclosed
to Bob, and Bob’s private data (Vb(High) and
Vb(Normal)) are not disclosed to Alice. In the same
way, we can compute Gain(SRain, Wind). Then we
can choose the attribute that causes the largest infor-
mation gain, and use this attribute to partition the
current node. This process can be repeated until we
finish building the tree.

3.4 Tree Pruning

To use any existing pruning scheme, we need to know
how to classify a sample data item using the decision
tree. Once we can classify a sample data item, we can
measure the accuracy of the decision tree, and hence
being able to prune the tree using the schemes pro-
posed in the literature (Rastogi & Shim 2000). There-
fore, we need to solve the following problem:

Problem 3.2 Given a data item d =
(x1, . . . , xs, y1, . . . , yt), with (x1, . . . , xs) known
by Alice and (y1, . . . , yt) known by Bob. How to use
the decision tree T (known to both) to classify this
data item.

Let us number the leaf nodes from 1 to L. We
define three vectors: Ta, Tb, and C, all of which are
of size L. Entries of Ta and Tb are initiated to 0. We
also number the class labels from 1 to m, and initiate
the entry i (for i = 1, . . . , L) of C to k if the ith leaf
node represents a category k.

Alice traverses the tree T . If a node is split using
an Alice’s attribute, Alice traverses to the correspond-
ing child based on d. If a node is split using a Bob’s
attribute, Alice traverses to all children of the node.
If Alice reaches a leaf node i, she changes the ith en-
try of Ta to 1. At the end, vector Ta records all the
leaf nodes that Alice can reach based on her share of
the data item d.

Bob does the similar: If a node is split using a
Bob’s attribute, he traverses to the corresponding
child; otherwise, he traverses to all of children of the
node. At the end, vector Tb records all the leaf nodes
that Bob can reach based his share of the data item
d.

It should be noted that T = Ta ∧ Tb has one and
only one non-zero entry because there is one and only
one leaf node that both Alice and Bob can reach.
Therefore, Ta ∧ (Tb ∧ C) should also have one and
only one non-zero entry, and the value of this entry
equals to the index of the category that d is classified
into. If we conduct the scalar product between Ta and
(Tb∧C), we should get the index of the category. Our
Scalar Product protocol can allow Alice and Bob to
conduct the scalar product between Ta and (Tb ∧ C)
without each party disclosing the private inputs to
the other party.

4 Building Blocks

The security of our classification method is based on
how two parties could compute the scalar product
of their private vectors. The scalar product protocol
described in the next sub-section is the main technical
tool used in this paper. We will describe an efficient



solution of the scalar product problem based on the
commodity server, an semi-trusted third party.

4.1 Introducing Commodity Server

For performance reasons, we use the help from an ex-
tra server, the commodity server, belonging to a third
party. Alice and Bob could send request to the com-
modity server and receive data (called commodities)
from the server, but the commodities should be inde-
pendent of Alice’s or Bob’s private data. The purpose
of the commodities is to help Alice and Bob conduct
the desired computation.

The third party is semi-trusted in the following
senses: (1) The third party should not be trusted;
therefore it should not be possible to derive the pri-
vate information of the data from Alice or Bob; it
should not learn the computation result either. (2)
The third party should not collude with both Alice
and Bob. (3) The third party follows the protocol cor-
rectly. Because of these attributes, we say that the
third party is an semi-trusted party. In real world,
finding such a semi-trusted third party is much easier
than finding a trusted third party.

As we will see from our solutions, the commodity
server does not participate in the actual computation
between Alice and Bob, it only supplies commodities
that are independent of Alice and Bob’s private data.
Therefore, the server can even generate independent
data off-line beforehand, and sell them as commodi-
ties to the prover and the verifier (hence the name
“commodity server”).

The commodity server model was first proposed
by Beaver (Beaver 1997, Beaver 1998), and has been
used for solving Private Information Retrieval prob-
lems in the literature (Beaver 1997, Beaver 1998, Di-
Crescenzo, Ishai & Ostrovsky 1998) and various pri-
vacy preserving computation problems (Du 2001, Du
& Zhan 2002).

4.2 Scalar Product

Alice has a vector A and Bob has another vector B,
both of the vectors have n elements. Alice and Bob
want to compute the scalar product between A and
B, such that Alice gets V1 and Bob gets V2, where
V1 +V2 = A ·B and V2 is randomly generated by Bob.
Namely, the scalar product of A and B is divided into
two secret pieces, with one piece going to Alice and
the other going to Bob. We assume that the following
computation is based on the real domain.

Protocol 4.1 (Scalar Product Protocol)

1. The Commodity Server generates two random
vectors Ra and Rb of size n, and lets ra + rb =
Ra ·Rb, where ra (or rb) is a randomly generated
number. Then the server sends (Ra, ra) to Alice,
and (Rb, rb) to Bob.

2. Alice sends Â = A + Ra to Bob, and Bob sends
B̂ = B + Rb to Alice.

3. Bob generates a random number V2, and com-

putes Â · B + (rb − V2), then sends the result to
Alice.

4. Alice computes (Â ·B +(rb −V2))− (Ra · B̂)+ ra

= A·B−V2+(rb−Ra ·Rb+ra) = A·B−V2 = V1.

The communication cost of this protocol is 4n,
which is 4 times more expensive than the optimal cost
of a two-party scalar product (the optimal cost of a
scalar product is defined as the cost of conducting the

product of A and B without the privacy constraints,
namely one party just sends its data in plain to the
other party). The cost can be further improved to
2n because the vectors Ra and Rb are random gen-
erated by the commodity server; therefore the com-
modity server can send just the seeds (numbers of
constant size) to Alice and Bob, and the seeds can
be used to compute the random vector. Solutions to
the scalar product protocol have been proposed be-
fore by Atallah and Du (Atallah & Du 2001) and by
Vaidya and Clifton (Vaidya & Clifton 2002). Both of
these solutions achieves the security without using a
third party; However, the communication of Atallah
and Du’s solution is much more expensive than this
solution. Although Vaidya and Clifton’s solution has
similar communication cost as ours, its computation
cost O(n2) is more expensive than ours O(n), where
n is the size of the vectors.

Theorem 4.1 Protocol 4.1 does not allow Alice to
learn B, it does not allow Bob to learn A either.

Proof 4.1 Since Â = A + Ra is all what Bob gets,
because of the randomness and the secrecy of Ra, Bob
cannot find out A.

Let us first assume that all the random numbers
are generated from the real domain. According to the
protocol, Alice gets (1) B̂ = B + Rb, (2) Z = Â ·B +
(rb − V2), and (3) ra, Ra, where ra + rb = Ra · Rb.
We will show that for any arbitrary B′, there exists
r′b, R′

b and V ′
2 that satisfies the above equations.

Assume B′ is an arbitrary vector. Let R′
b = B̂ −

B′, r′b = Ra ·Rb− ra, and V ′
2 = Â ·B′ + r′b. Therefore

Alice has (1) B̂ = B′ +R′
b, (2) Z = Â ·B′ +(r′b−V ′

2),
and (3) ra, Ra, where ra + r′b = Ra · R

′
b. Therefore

from what Alice learns, there exists infinite possible
values for B.

If the random numbers are not generated from the
real domain, Alice might get some information about
B. For example, if the elements of B are in the do-
main of [0, 100], and we also know the random num-
bers are generated from [0, 200] domain, then if an
element of vector B +Rb is 250, we know the original
element in vector B is bigger than 50.

It should also be noted that our protocol does not
deal with the situation where one party lies about
its input. For example, instead sending B + Rb, Bob
sends B′+Rb, where B′ is an arbitrary vector. In that
case, neither of them can get correct results, but as
we have shown, neither of them can gain information
about the other party’s private input either.

In the last section, we did the computation based
on the assumption that Bob let V2=0. By doing so,
the performance becomes better. However, it allows
a malicious party to gain partial information. For ex-
ample, if Bob is malicious and wants to know whether
the first entry of Va is 1, he can make up a Vb, such
that only the first entry is 1, and the rests are 0’s.
If the scalar product result of Va and Vb equals to 1,
Bob knows the first entry of Va is 1, otherwise it is 0.

If Bob does not let V2=0, The scalar product (Pro-
tocol 4.1) can allow Alice to learn aj and Bob to learn
bj , where aj + bj = Pj . Therefore nobody can know
the actual value of Pj . The next section will show
how to compute the gini index and the entropy with-
out disclosing Pj to either Alice or Bob.



      Outlook

    Humidity       Wind

No   Yes Yes  No

Sunny                                                        Rain

      
High                                      Normal  Weak                                  Strong

Figure 3: An Example Decision Tree

5 Privacy Improvement

5.1 Computing Gini Index

Problem 5.1 (Gini Index) Alice has a sequence
a1, . . . , am, Bob has a sequence b1, . . . , bm, and Pj =
aj + bj for j = 1, . . . , m. Without disclosing each
party’s private inputs to the other, they want to com-
pute

Gini(S) = 1−

m∑

j=1

(aj + bj)
2.

Because of the following equations, the gini index
can be actually computed using the Scalar Product
protocol.

∑m

j=1(aj + bj)
2 =

∑m

j=1 a2
j +

∑m

j=1 b2
j

+(a1, . . . , am) · (b1, . . . , bm)

5.2 Computing Entropy

Problem 5.2 (Entropy) Alice has a sequence
a1, . . . , am, Bob has a sequence b1, . . . , bm, and
Pj = aj + bj for j = 1, . . . , m. Without disclosing
each party’s private inputs to the other, they want
to compute

Entropy(S) = −

m∑

j=1

(aj + bj) log(aj + bj)

To compute the entropy, the difficulty is how to
compute log(aj+bj). First, let us look at the following
Logarithm problem:

Problem 5.3 (Logarithm) Alice has a number a,
and Bob has a number b. They want to compute
log(a + b), such that Alice (only Alice) gets a′, and
Bob (only Bob) gets b′, where b′ is randomly gener-
ated and a′ + b′ = log(a + b). Nobody should be able
to learn the other party’s private input.

To solve this problem, Bob can generate a random
positive number r in a finite real domain, and let b′ =
− log r. Now Alice and Bob use the scalar product
protocol to compute r(a + b), such that only Alice
knows r(a + b). Because of r, Alice does not know b.
Then Alice can compute log r(a+ b) = log r +log(a+
b) = a′; therefore a′ + b′ = log(a + b).

Let a′
j + b′j = log(aj + bj), where a′

j and b′j are
generated using the above Logarithm protocol. Now
Alice and Bob need to compute the following, which

can also be achieved by using the scalar product pro-
tocol:

m∑

j=1

(aj + bj)(a
′
j + b′j)

6 Information Disclosure Analysis

Information disclosure of privacy preserving data
mining could come from two sources: one is the disclo-
sure caused by the algorithm, the other is the disclo-
sure caused by the result. The second type is inherent
to the privacy preserving data mining problem. We
have analyzed the first part of information disclosure
when we discuss about our solution. Here, we discuss
the second type of information disclosure. For that
we assume the underlying algorithm itself is perfectly
secure and discloses no information.

Assume the following decision tree model (Fig-
ure 3) is what we get after the decision tree building.
We assume this model is 100% accurate. Now given a
data item T1 ( Alice:(Sunny, No), Bob:(High, Weak,
No)), we will show how Bob can figure out Alice’s
private data.

From the model, the only path that matches Bob’s
part of the data is the leftmost path. It is No→
High → Humidity→Sunny → Outlook. Therefore,
Bob knows that Alice’s value of outlook attribute is
Sunny.

In practice, decision tree for the classification is
much more complex, the tree is much deeper, and the
accuracy of the model is not perfect. It is not as easy
to guess the other party’s private data as in this case.
In the next step of our research, we plan to investigate
how much information could be disclosed in practice
from the final decision tree.

7 Conclusion and Future Work

Classification is an important problem in data min-
ing. Although classification has been studied exten-
sively in the past, the various techniques proposed
for classification do not work for situations where the
data are vertically partitioned: one piece is known
by one party, the other piece by another party, and
neither party wants to disclose their private pieces
to the other party. We presented a solution to this
problem using a semi-trusted commodity server. We
discussed the security of our solution and the possible
security problem inherent in the decision tree classi-
fication method.

One thing that we plan to investigate is how
much information about the vertically partitioned
data could be disclosed if both parties know the final



decision tree. This is very important to understand
the limit of the privacy preserving classification. We
will also investigate other decision tree building algo-
rithms, and see whether our techniques can be applied
to them or not.
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