
It’s Not Them, It’s Us!

Why Computer Science Fails to Impress Many First Years

Rashina Hoda
1
 Peter Andreae

2

1
Electrical and Computer Engineering, The University of Auckland, New Zealand

2
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand

r.hoda@auckland.ac.nz peter.andreae@ecs.vuw.ac.nz

Abstract

High attrition and failure in first year computer science

and software engineering courses has often been linked to

the personal traits and skills of students – dividing the

world into those that “get it” and those “that don’t”. We

present several concrete strategies based on the recently

developed Learning Edge Momentum (LEM) theory,

which when applied together, were found useful in

reducing failure rates. Based on the our experiences, we

challenge our current understanding of attrition and

failure in first year courses and dare to claim that maybe

it’s not them, it’s us that is the problem.
 .

Keywords: computer science, software engineering, first

year course, attrition and failure rates, LEM theory

1 Introduction

Attrition and failure in first year computer science and

software engineering courses has often been linked to the

personal traits and skills of students, sometimes referred

to as the “geek-gene”. According to this notion, the world

can be divided into those that “get it” and those “that

don’t”. In light of recent research emerging from the

University of Otago, New Zealand (Robins, 2010), we

attempt to redefine our current understanding of attrition

and failure rates in first year courses.

The Learning Edge Momentum (LEM) theory

challenges the notion of the “geek-gene” and suggests

that it is the inherently interdependent nature of

programming concepts, along with human tendency to

learn at the edge of prior knowledge that is a significant

contributing factor towards high attrition and failure rates

(Robins, 2010). Fundamental concepts of programming

imparted in first year courses are highly linked and “build

upon” each other. This implies that an inability to grasp

early concepts is a strong indicator of subsequent overall

failure rates. We developed and introduced several

strategies to our fundamental first year course based on

the LEM theory. The results, although preliminary, are

encouraging.
In this paper, we address one of the perennial problems

of computer science– high failure and attrition rates in first
year courses–and present some concrete strategies and
encouraging results from our application of the LEM
theory.

Copyright © 2014, Australian Computer Society, Inc. This

paper appeared at the 16th Australasian Computer Education

Conference (ACE 2014), Auckland, New Zealand, January

2014. Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 148. J. Whalley and D. D'Souza,

Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.

2 Background

COMP102: Introduction to Program Design is a first

course in programming in the School of Engineering and

Computer Science at Victoria University of Wellington,

New Zealand. The course introduces object-oriented

programming, with objects introduced fairly early in the

course. The course spans one trimester (12 weeks) and

introduces Java control structures, methods, parameters,

top-down design, text input/output, graphical output,

objects and classes, files, arrays (1D, 2D, variable sized

lists), simple event-driven GUI (very constrained), and

Java interfaces. We do not cover inheritance or Collection

classes in this course. COMP102 is a mandatory course

for all computer science and engineering majors and a

popular elective for some other disciplines, such as

Information Systems. In other words, COMP102 is a

reasonably standard first year Computer

Science/Software Engineering course. Further details of

the course structure and content can be found on the

course homepage:

http://ecs.victoria.ac.nz/Courses/COMP102_2011T1/

3 The Problem: High Attrition and Failure

Rates

Over the past 25 years, through all its minor and major

modifications and variations, COMP102 has consistently

exhibited high attrition and failure rates, ranging from 40

to 50%. This is a problem. Such high failure rates are

common in similar courses around the world and so are

the non-normal distributions of grades (especially a bi-

modal distribution).

Although research into computer science education

does not conclusively identify anyone or more factors that

determine success or failure (Bornat, Dehnadi and Simon

2008, Cross 1970, Curtis 1984), several factors have been

suggested as possible causes of high attrition and failure

rates in first year programming courses. One of the most

common is the notion that individuals have an innate

ability to program which determines their success or

failure. Determinants of this “innate programming

ability”, suggested over the years, include factors such as

cognitive ability (verbal, mathematical, spatial, and

analogical skills) (Pea and Kurland 1984, Wileman,

Konvalina and Stephens 1981, Wolfe 1969) cognitive

development (Piaget’s stages of cognitive development

and Bloom’s taxonomy of educational objectives)

(Bloom, Englehart, Furst, Hill and Krathwohl 1956,

Piaget 1971), cognitive style (learning style, personality

type etc.) (Hudak, and Anderson 1990, Myers 1995), and

demographic factors (gender, age, etc.) (Woszczynski,

Haddad and Zgambo 2005). In other words, most

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

159

research has been focused on determining the cause

assuming the problem is with “them” (i.e. the students)

4 The LEM Theory

The Learning Edge Momentum (LEM) hypothesis

suggests an alternative explanation and claims that it is

the human tendency to learn at the edge of prior

knowledge combined with the inherently tight and highly

interdependent nature of programming concepts that leads

to success or failure in learning programming (Robins,

2010). In other words, since we learn at the edge of what

we already know, successful acquisition of one concept

makes it easier to learn other closely related concepts and

vice-versa (Robins, 2010). At the heart of the LEM

theory is the realization that the nature of programming is

such that concepts (and constructs) “build upon” each

other and failure to grasp any one component, especially

in the early parts of the course, has a cascading effect –

making it significantly harder to grasp later, related

concepts. The LEM hypothesis is based on a simulated

model of grade distributions and an extensive review of

educational and psychological literature.

Our experiences suggest that programming inevitably

involves dependence e.g., one cannot understand loops

without understanding variables, and one cannot

understand arrays without understanding loops, and so

on. This highly-integrated nature of programming

concepts coupled with the way people learn creates an

“inherent structural bias” in first year courses leading to

extreme outcomes reflected by bi-modal distribution of

grades.

5 The Strategies: Improving Momentum

A direct recommendation of the LEM theory is for

particular attention to be paid to early stages of the course

ensuring everything runs smoothly and there are plenty of

opportunities for grasping early concepts. Robins’

recommendations, however, were very general. To apply

these recommendations, and the principles of the LEM

theory, we developed a set of concrete strategies for

modifying COMP102. They can be grouped into four

clusters below and described in the following

subsections:

 Minimizing early complexities in the course

 Minimizing dependences between early

components of the course

 Maximizing chances of mastery of the early

concepts and skills

 Maximizing opportunities for early recovery

In the following sections, we describe each of these.

5.1 Minimizing Early Complexity using UI

Library

An ideal course from a LEM perspective would start with

modules that each address a small set of concepts, skills,

and knowledge, and able to be learned readily by students

based on what they already knew at the beginning of the

course. A typical programming course, especially in a

language such as Java, has a large number of “gratuitous

complexities” – concepts that are not fundamental

principles of programming but are consequences of the

programming language, the programming environment,

or the particular details of how the lecturer has chosen to

present the material.

Fig. 1 Example of using UI library (right) to minimize early

complexity

Even simple one-method programs in Java involve a

lot of gratuitous complexity if they involve any input and

output. For example, standard output using

System.out.println involves calling a method on a static

field. Even though this does not have to be explained in

detail, this statement has two “dots”, in contrast to the

standard pattern of <object> <dot> <method name> (

<arguments>) and such inconsistencies constitute

gratuitous complexity that trips up students. Standard

input also includes similar complexities. The simplest

form is probably to use a Scanner, but this means that for

their first programs to have any input from the user, the

students must deal with creating instances of a Class (and

passing an argument that is a static field to the

constructor), storing the object in a variable, and then

calling methods on it. To use any kind of graphical

output requires even more complexity. Although

experience tells us that many students cope with this, the

LEM theory also suggests that some students will fail the

course because they got tripped up at this early stage and

were unable to recover.

We designed and introduced a Java library (the “UI”

library) that provides much simpler input and output,

allowing students to do text input and output, and simple

graphical output by calling methods on a “predefined

object”. This library removed a lot of the gratuitous

complexity from the early part of the course.

Importantly, it made it possible to delay the construction

of new objects from the second week to the third week,

significantly simplifying the concepts required for the

second assignment. It also allowed the construction of

new objects to be introduced in a more meaningful and

motivating context, rather than just as a way of getting

input from the user. The library was designed to be as

consistent with standard Java as possible, in order to

minimize the barriers when the students have to deal with

standard Java. For example, text input in the library

includes methods with the same names and behaviour as

the methods in the Scanner class, making it easier for

students to cope with Scanner when they meet it in the

context of reading data from files later in the course.

Many courses and textbooks have also introduced

special libraries to reduce the complexity for new

programmers. However, the UI library seems to be

particularly simple to use, in comparison to the ones we

CRPIT Volume 148 - Computing Education 2014

160

have seen. More details: http://ecs.victoria.ac.nz/

Courses/COMP102_2011T1/Comp102Documentation

Fig. 1 shows a couple of examples of how the use of the

UI library minimized complexity with the original code

on the left-hand side and the same code simplified as a

result of the use of the UI library on the right-hand side.

5.2 Minimizing Dependencies in Assignments

The second ideal quality from a LEM perspective is that

the modules should not depend on each other, so that

students can learn each module based on what they

already knew at the beginning of the course, rather than

having to have already mastered the previous modules.

As Robbins points out, the ideal is simply not possible in

programming since so many of the concepts build on top

of each other – for example, parameter passing depends

on understanding variables, and both conditionals and

loops depend on Boolean expressions. However, since

many of the early assignments had to be at least modified,

if not replaced because of the new library, we were able

to look again at the assignments from the perspective of

minimizing dependencies. By being careful about

choosing the programming tasks, we were able to

significantly reduce the level of dependence between

assignments 2, 3 and 4, compared to the previous year.

For example, there were two pairs of programs prior to

introducing LEM strategies where the second program in

the pair was an extension of the first program assigned in

the previous week. If a student failed in the earlier

assignment, they were at an immediate and obvious

disadvantage in the later assignment. In introducing LEM

strategies, we eliminated all such pairs, so that each

program in the first four weeks was quite different.

 The changes to the library also removed some of the

dependencies, so that there was no longer a dependency

between the program that introduced text input and the

program that was centred on creating new objects and

calling methods on them (since dealing text input no

longer had to introduce the concept of creating a new

Scanner object).

However, there was little reduction in the

dependencies between the later assignments, because they

were deliberately addressing larger programs that

necessarily integrated a variety of constructs and concepts

from the earlier part of the course.

5.3 Maximizing Chance of Success using

“Bridging Exercises”

Even though we were able to reduce some of the

gratuitous dependencies between the early assignments,

there were still significant dependencies, even in the first

four weeks. For example, variables are introduced right at

the beginning, and are used in all programs from then on;

once conditionals are introduced, they are used

everywhere. We believe that these dependencies are

unavoidable.

Given this, it is essential to maximize the probability

that students will be able to master the concepts in every

one of the early assignments. This is not necessarily the

same as maximizing the probability of successfully

completing all the programs – all that is required to keep

the momentum going is for the students to understand the

new concepts in each module well enough to be able to

use them and build on them in the next module.

Our previous assignments were all whole programs,

and if they didn’t get the program, they probably didn’t

get the concept either. We did not want to get rid of these

“whole programs” – represent what the larger task of

programming is all about and the fundamental goal of the

course – but the “all or nothing” aspect is problematic

according to LEM theory.

Therefore we added exercises – to enable mastery of

the individual constructs and concepts, as a “bridge” into

the programs which would then build on and solidify, and

show their use in a realistic context. The goal of the

exercises was merely mastery of individual new

constructs and new concepts. Exercises were small

artificial programs that were pared down to be as small as

possible without being totally meaningless. Students were

allowed to get as much help from tutors in the labs as

they needed for completing the exercises. In order to

avoid the exercises becoming a possible hindrance for the

more advanced students, there were a series of exercises

which were not marked and students could move to the

actual (marked) program as soon as they could do 2

exercises by themselves.

5.4 Maximizing Opportunities for Early

Recovery via Self-Directed e-Learning

We developed several self-directed e-learning tools to

allow students maximum opportunities for revisiting

materials and learning from them in a self-paced manner.

These self-directed tools included video materials that

were made available online to students in order to provide

them with the ability to self-direct their learning. The

lectures were video recorded and the recordings were

made available to students online through the course

homepage and in their labs. Lecture videos allowed

students to view/review material in their own time at their

own pace. We produced several kinds of videos: video

recordings of lectures, demos of assignment programs,

working review of past tests and exams, short tutorials on

various topics, and additional review of lecture material.

We also provided videos demonstrating the assignment

programs to make sure that students understood clearly

what was required.

These materials included a set of short, “YouTube-

style” tutorial videos focused on single programming

concepts, such as loops and methods, and working

through previous exam questions. These videos were

between 8 and 30 minutes. Tutorial videos took double

the time to prepare as the length of the videos but were

reusable from year-to-year.

5.5 Encouraging Results

We are encouraged by the preliminary results of applying

the LEM theory to COMP102. Preliminary results show

that the overall failure reduced to 35% (from 45% the

previous year). A comparison between failure rates in

before and after application of LEM theory is presented

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

161

http://ecs.victoria.ac.nz/Courses/COMP102_2011T1/Comp102Documentation
http://ecs.victoria.ac.nz/Courses/COMP102_2011T1/Comp102Documentation

in table 1. There were 262 and 269 students in the course

in each of the years respectively.

Categories Pre-LEM Post-LEM

Overall (of 262/269) 45% 35%

CS/ENG (of 173/169) 39% 33%

Non-CS/ENG (of 89/100) 52% 37%

Design Students (of 17/19) 75% 42%

No prior programming
experience (of 127/149)

48% 42%

Table 1. Failure Rates in COMP101 Pre- and Post-

Application of LEM Theory Strategies.

We conducted a course evaluation at the end of the

course to gain a sense of how our strategies were

perceived by the students. There were 128 responses, of

which 68% indicated that they found that the exercises

and lecture videos "contributed to learning"; nearly 72%

said they found that the tutorial and demo videos

"contributed to learning".

We also analysed the written comments on evaluation

forms which favoured video resources due to their ability

to help students in "revisiting concepts", "catching

missed lectures", "seeing assignments work before

starting on it", and easily accessing them. Similar

comments were recorded for tutorial videos: "Tutorial

videos helped a lot - need more of them", "tutorial videos

going over last year's test helped".

We believe that if these preliminary results hold up,

then there is merit in continuing with the strategies we

developed and deployed in COMP102 based on the LEM

theory. Further iterations of the course will provide a

better indication of the sustainability of these results.

6 Conclusion

High attrition and failure rates in first year computer

science and software engineering courses have

traditionally been attributed to individuals’ “innate”

inability to program. Recent research proposed an

alternative explanation in the form of the Learning Edge

Momentum (LEM) theory which suggests that human

tendency to learn at the edge of prior knowledge

combined with the inherently tight and highly

interdependent nature of programming concepts leads to

success or failure in learning programming. We

developed some concrete strategies in order to apply the

LEM theory to our first year computer science and

software engineering course and found encouraging

results.

Using the strategies presented in this article – such as

reducing dependencies between components and

providing ample avenues for successfully grasping core

concepts early on – we hope to provide everyone who

attempts to learn programming a better chance at

succeeding.

7 References

Bloom, B., Englehart, M.D., Furst, E.J., Hill, W.H., and

Krathwohl (1956): D. Taxonomy of Educational

Objectives: Handbook I Cognitive Domain, NY:

Longmans

Bornat, R., Dehnadi, S. and Simon (2008): Mental

models, consistency and programming aptitude,

Proceedings of the Tenth Australasian Computing

Education Conference (ACE 2008), 53–62

Cross, E.M. (1970): The behavioral styles of computer

programmers, Proceedings of the Eighth Annual

SIGCPR Conference, 69–91

Curtis, B. (1984): Fifteen years of psychology in software

engineering: Individual differences and cognitive

science, Proceedings of the 7th International

Conference on Software Engineering, 97–106

Hudak, M.A. and Anderson, D.E. (1990): Formal

operations and learning style predict success in

statistics and computer science courses. Teaching of

Psychology, 17(4), 231–234

Myers, I.B. (1995): Gifts Differing: Understanding

Personality Type, Mountain View, CA: Davies-Black

Publishing

Piaget, J. (1971): The theory of stages in cognitive

development, In D.R. Green, M.P. Ford, & G.B.

Flamer (Eds.), Measurement and Piaget NY:

McGrawHill, 1–11

Pea, R.D. and Kurland, D.M. (1984): On the Cognitive

Prerequisites of Learning Computer Programming.

Technical Report No.18, Bank Street College of

Education, New York, NY

Robins, A (2010): “Learning edge momentum: A new

account of outcomes in CS1,” Computer Science

Education, 20(1), 37-71

Wileman, S.A., Konvalina, J. and Stephens, L.J. (1981):

Factors influencing success in beginning computer

science courses. Journal of Educational Research, 74,

223–226

Wolfe, J.M. (1969): Testing for programming aptitude,

Datamation, April 1969, 67–72

Woszczynski, A., Haddad, H. and Zgambo, A. (2005):

An IS student’s worst nightmare: Programming

courses. 8th Annual Southern Association for

Information Systems (SAIS), 130–133

CRPIT Volume 148 - Computing Education 2014

162

