MedRank: Discovering Influential Medical Treatments from Literature by Information Network Analysis

Ling Chen\(^1,2\) Xue Li\(^1,3\) Jiawei Han\(^4\)

\(^1\) School of Information Technology and Electrical Engineering
University of Queensland, Australia
\(^2\) Email: lchen5@uq.edu.au
\(^3\) Email: xueli@itee.uq.edu.au
\(^4\) Department of Computer Science
University of Illinois at Urbana Champaign
Urbana, United States
Email: hanj@uiuc.edu

Abstract
Medical literature has been an important information source for clinical professionals. As the body of medical literature expands rapidly, keeping this knowledge up-to-date becomes a challenge for medical professionals. One question is that for a given disease how can we find the most influential treatments currently available from online medical publications? In this paper we propose MedRank, a new network-based algorithm that ranks heterogeneous objects in a medical information network. The network is extracted from MEDLINE, a large collection of semi-structured medical literature. Different types of objects such as journal articles, pathological symptoms, diseases, clinical trials, treatments, authors, and journals are linked together through their relationships. The experimental results are compared with the expert rankings collected from doctors and two baseline methods, namely degree centrality and NetClus. The evaluation shows that our algorithm is effective and efficient. The success of categorized entity ranking in medical literature domain suggests a new methodology and a potential success in ranking semi-structured data in other domains.

1 Introduction
The vast body of medical literature grows rapidly every year. Taking MEDLINE the premier bibliographic database of the world’s largest medical library, supported by the U.S. National Library of Medicine (NLM), as an example, there are medical journal articles (10,390,997), clinical trials (1,011,711), references to diseases (587,012), and publication of 5,400 international journals in MEDLINE 2010. About 700,000 new records were added into MEDLINE in 2011. The MEDLINE 2012 baseline now has more than 20 million records.\(^1\)

The direct implication of this trend is that it is becoming more and more difficult for doctors to keep their medical knowledge up-to-date by processing information manually. They are facing a challenge of accessing relevant information for evidence-based decision support. Many studies have found improvements for search functionality in existing medical databases by using information retrieval techniques (Hliaoutakis et al. 2009, Luo 2009, Luo & Tang 2008, Luo et al. 2008). However, the core problem lies not in retrieving best-matched records, but in knowledge discovery.

In this research, we approach the literature-based knowledge discovery problem by tackling one of its example problems, that is, finding the most influential treatments for a given disease. A treatment is “influential” if it is mentioned by many good articles and published with clinical trials that have positive results. A good article is one that is written by reputed author(s) and published in a good journal. A good medical journal is one that has a high impact on research. In our research we use the MEDLINE database to construct a medical information network (Easley & Kleinberg 2010, Sun, Yu & Han 2009) that is abstracted as a graph with referential relationships amongst different types of objects extracted from MEDLINE. In order to find the most influential treatments, say the top-10, all associated objects have to be ranked. Thus, our problem becomes a ranking problem: Given a disease name, how could we rank the most influential treatments?\(^2\)

Existing ranking methods can be classified into three categories, namely preference-based, similarity-based and network-based.

- **Preference-based ranking** has been studied for a long time since 1904 (Spearman 1904). Preference-based rankings always reflect subjective views on objects by humans. In this ranking process, preferences of objects are collected and then a model will be derived (Ceci et al. 2010).

- **In similarity-based ranking**, objects are expressed as vectors of their attributes. For example in Collaborative Filtering (Shardanand & Maes 1995), Cosine or Euclidean distance functions can be used to rank objects. Similarity-based rankings are widely used in recommendation systems (Adomavicius & Tuzhilin 2005).

- **Network-based ranking** was first referred to as PageRank (Page et al. 1999) and HITs (Kleinberg 1999) algorithms. In this kind of ranking, a graph structure is used. An iterative process is applied to propagate good properties of objects through links. Network-based ranking is sometimes referred to as the link-analysis based rank-

\(^1\)http://www.nlm.nih.gov/bsd/licensee/2012stats/baseline.html
\(^2\)http://www.nlm.nih.gov/bsd/licensee/2012stats/baseline.html
In practice, there are often mixed models, for example, the current search methods used by Google. In this paper, a new network-based ranking algorithm called MedRank is proposed to find the most influential treatments for a given disease. To the best of our knowledge, this is the first work that introduces information network analysis techniques for ranking objects in a medical domain. A multi-dimensional medical information network is constructed based on the categorized entities identified in medical literature. The proposed algorithm has been evaluated against expert rankings collected from doctors and the baseline methods, i.e., degree centrality and NetClus. The evaluation shows that MedRank outperforms both baseline methods.

The rest of the paper is organized as follows: Section 2 discusses related work, followed by Section 3 that gives the problem formalization. Section 4 presents the proposed MedRank algorithm. Section 5 describes the experiments, survey analysis and evaluation, followed by discussions in Section 6. Finally, Section 7 presents the conclusions.

2 Related Work

2.1 Existing Literature-based Systems

Information Retrieval techniques have been applied to search for medical information in repositories such as PubMed and UpToDate. For example, Ratprasartporn et al. (2009) proposed a content-based method for digital literature collection search with experiments on PubMed. Chen et al. (2011) introduced a passage retrieval method for MEDLINE articles. Luo et al. (2008) and Luo (2009) have proposed Web search engines to find medical information over the Web. In medical literature-based knowledge discovery, MEDLINE has been used as a main source to discover relationships between the medical concepts appeared in medical journal articles (Petric et al. 2009, Yetisen-Yildiz & Pratt 2006). All of these focus on filtering out the irrelevant information and assisting users to find out the medical articles relevant to the given medical terms.

Most clinical decision support systems are built based on the past clinical records and the analytical reasoning on the causal relationships established among the symptoms, patient demographic data, diseases, treatments, etc. Many researchers developed graph-based models, such as Bayesian Network and Artificial Neural Network, for practical systems (Berner 2007). As an exception, Zhao & Weng (2011) introduced a star graph model for cancer-related protein classification. But it is not literature-based nor applicable to heterogeneous objects and their target is classification, not ranking.

2.2 Existing Network-based Ranking Methods

Network-based ranking was first referred to as the PageRank (Page et al. 1999) and HITS (Kleinberg 1999) algorithms. A directed graph of hyperlinked Web pages on the WWW is used. The idea behind is essentially the eigenvector centrality that has been long studied in Social Network Analysis (Newman 2010). Unlike the degree centrality that considers all neighbouring nodes equally important, the eigenvector centrality finds those “center” or important nodes such that their neighbours are themselves important. The key idea of PageRank is the rank propagation through links, i.e., ranks are propagated from one Web page to another through the hyperlinks. The original PageRank model is often explained as a Markov chain with a transition probability matrix. The PageRank vector is iteratively updated with the matrix until it converges to a limiting distribution. The convergence is guaranteed as the transition matrix has been shown to be irreducible (i.e., strongly connected) and aperiodic (i.e., non-bipartite) (Langville & Meyer 2004). HITS algorithm, on the other hand, aims to find authoritative pages based on a user supplied query. It considers not only the authoritative pages as PageRank does, but also the hub pages that have links to multiple relevant authoritative pages.

PopRank (Nie et al. 2005) extends the PageRank model from the Web page level to the Web object level and from ranking homogeneous objects to heterogeneous ones. Web objects may belong to different types, such as an article or a person, and be related to each other in different ways, such as cited-by, written-by, etc. As the importance of different types may differ, PopRank automatically assigns an optimized weight to every type of relationships, called the popularity propagation factor (PPF).

Sun et al. extend the ranking mechanism of PopRank from the Web objects to a network of heterogeneous objects extracted from DBLP, a bibliographic database in computer science. Unlike the previous work, an undirected graph is used. Their first work is RankClus (Sun, Han, Zhao, Yin, Cheng & Wu 2009), a ranking-based clustering algorithm that ranks bi-type objects in its own type within clusters. NetClus (Sun, Yu & Han 2009) is proposed in their later work to handle multi-type objects in a special kind of network called the Star Network. It is characterized by the way different types of objects are connected in a star-like shape.

To the best of our knowledge, the proposed MedRank method is the first work that introduces the network-based ranking approach to the medical domain. PageRank and PopRank are not applicable to our ranking problem, because PageRank is designed for one type only, i.e., Web page, and both of them are directly applicable only to directed graphs. MedRank’s main difference from RankClus and NetClus is that it is based on the available category labels and no clustering mechanism is involved.

3 Problem Formalization

In this section, we define the problem of ranking in medical information networks and introduce several related concepts and necessary notations.

Definition 1 Heterogeneous Information Network

Given a set $\Gamma = \bigcup_{t=1}^{T} X_t$ of T types, where X_t is the set of objects belonging to the t^{th} object type, a graph $G = (V, E)$ is called an information network if $\Gamma = V$ and E is a binary relation on V. A heterogeneous information network N is an information network with $T \geq 2$.

Definition 2 Medical Information Network

Given a heterogeneous information network $G =$
\((V, E)\), it is a medical information network, if \(\forall X_i \subset V, X_i \) is medical related and \(\exists X_i, X_j \subset V\) such that
\(X_i\) is the set of “Disease” type objects, and \(X_j\) is the set of “Treatment” type objects.

Definition 3 Star Network
Given a heterogeneous information network \(G = (V, E)\) on \((T+1)\) types of objects and \(V = \bigcup_{t=0}^{T} X_t\),
\(G\) is called a star network if \(\forall x = (x, y) \in E, x \in X_0 \land y \in X_t(t \neq 0)\), or vice versa.

Star-shaped structures are often found in information networks, for example, the bibliographic in-
formation networks. A star network is characterized by its edges only existing between one special type of
objects, called the center type objects (i.e., \(X_0\)), and objects of other types, called the attribute type
objects (i.e., \(X_t(1 \leq t \leq T)\)). This characteristic essentially forms a bipartite graph with a star schema.

In this paper, we construct a medical star information
network that has “Article” objects as the center type objects and “Disease”, “Treatment”, “Author”,
“Clinical Trial” and “Journal” objects as attribute type objects. The network schema is given in Fig. 1.

Definition 4 Disease Sub-network
Given a medical star information network \(G = (V, E)\) where \(\exists X_d \subset V\) is the set of “Disease” type objects and given a disease name \(q \in X_d, \) a disease sub-
network \(N'\) is a graph \(G' = (V', E') \subset G\) such that \(V' = V - \{x \in X_0\mid \exists y \in E \land y = q\}\) \(\land E' = \{(x, y) \in E|x, y \in V'\}\).

As a treatment is always a treatment against some disease, it makes more sense to rank treatments for a
disease. Thus, we define a sub-network \(N' = (V', E')\) of a given disease \(q\) such that every Article node in
\(V'\) is an article about the disease \(q\). This is done by subtracting any Article node \(x \in X_0\) from \(V\) such
that none of the Disease node \(y\) that \(x\) links to is \(q\). Fig. 2 gives an example of an AIDS disease sub-
network with two articles. Now, the problem can be formalized as:

Problem Definition 1 Given a sub-network \(N' = (V', E')\) of disease \(q\) such that \(\exists X_j \subset V'\) is the set of
treatment objects, a ranking function \(R\) from \(X_j\) to \(R^+\), and a number \(K, \) find a set \(X' \subset X_j\) such that
\(|X'| = K \land \forall y \in X', R(y) > R(x), \forall x \in (X_j - X')\).

So, the problem is to find the top-\(K\) highest ranked
treatments for a given disease. In the following, when context is clear, we use \(X_i\) to denote the object set
and its type name interchangeably.

4 ALGORITHMS
The proposed MedRank algorithm utilizes the link-
age information among data objects to rank influ-
ential treatments for a given disease. These data ob-
jects are extracted from the medical literature as a
medical information network. The goal is to rank
every “Treatment” object based on its relationships
with other types of objects. The essence of the algo-
rithm is computing eigenvector centrality, which gives
higher ranks to nodes whose neighbours are them-
selves ranked higher. The output is a list of top-\(k\)
ranked treatments for the disease.

Two phases are involved, namely the network ex-
traction phase and the ranking phase. Details of each
phase are given in the following sub-sections.

![Figure 1: A star network schema](http://www.nlm.nih.gov/pubs/factsheets/mesh.html)

![Figure 2: A disease sub-network example](http://www.nlm.nih.gov/research/umls/Snomed/snomed)

4.1 Network Extraction
In this sub-section, we explain how a medical informa-
tion network is extracted from input literature corpus
using a medical ontology. The goal is to scan the
corpus once and build a network for the ranking phase.

A medical literature corpus stores medical research
publications up-to-date. Well-known examples are
MEDLINE and Cochrane systematic reviews. A
medical ontology data-base provides a standardized
set of medical thesaurus hierarchically structured for
the classification purpose. Examples of widely used
thesaurus systems include MeSH, SNOMED-CT, ICD-10, etc.

In order to explore the relationships among ob-
jects extracted from medical literature and thus rank
them accordingly, we found that articles play the role
as the intermediate that connects other objects identi-
fied from them. For example, an article may be about
AIDS and some treatments; by finding all the articles
that discuss AIDS, we can find all the possible treat-
ments related to AIDS in the literature. In fact, ev-
every article can be represented as a sub-graph of a star
shape. Articles are also connected via their shared
objects. For example, Fig. 2 shows a graph representa-
tion of two articles about “AIDS”. They are con-
ected via “AIDS” object (i.e., shared disease) and
“Anti-viral Agent” object (i.e., shared treatment).

This type of network, characterized by its star-
shaped schema, is called the star network (Sun, Yu & Han 2009). Article objects are called center type ob-
jects and the rest objects connected to them are called
attribute type objects. The star network schema for

![Image 351x600 to 494x692]

![Image 369x706 to 476x802]

[^3]: http://www.cochrane.org/
[^4]: http://www.who.int/classifications/icd-en/
our medical information network is presented in Fig. 1 and the network extraction phase is summarized as Algorithm 1.

4.2 Ranking Formulas

The goal of MedRank’s ranking formula is to find the “center” or important nodes in a medical information network. PageRank computes such eigenvector centrality, but it is only applicable to homogeneous information networks.

To propagate ranks among multi-type objects in a star-shaped network, we adapt the Authority Ranking formula of NetClus. Formula 1 shows the \((h+1)\)th iteration of ranks passing from type \(Z\) objects via center type \(C\) objects to type \(Y\) objects, as attribute type objects only have direct links to the center type \(C\) objects (see Fig. 2).

\[
R_{Y}^{(h+1)} \leftarrow W_{Y,C}D_{CZ}^{-1}W_{CZ}R_{Z}^{(h)}
\]

(1)

In Formula 1, \(R_Y\) and \(R_Z\) are rank vectors of type \(Y\) and type \(Z\) objects respectively; \(W_{Y,C}\) is an adjacency matrix such that if \(\exists (y_i, c_j) \in E, y_i \in Y, c_j \in C\), then \(w_{y_i c_j} = 1\); otherwise, \(w_{y_i c_j} = 0\). As an undirected graph is used \(W_{Y,C} = W_{C,Y}\). \(W_{C,Z}\) is defined in the same way. \(D_{CZ}^{-1}\) is a diagonal matrix with diagonal value equivalent to the row sum of \(W_{C,Z}\). Hence, \(D_{CZ}^{-1}W_{C,Z}\) is the row-normalized adjacency matrix of \(W_{C,Z}\).

Let \(A\) be a list of \(n\) attributes \(X_1, X_2, ..., X_n\) selected for ranking, where the target attribute of interest is \(X_1\), and \(C\) be the center type as before. By chaining all the attributes in \(A\) (from index 1 to \(n\)) based on Formula 1, it allows ranks to propagate through all different types of objects and thus makes eigenvector centrality computation possible. The resulting matrix is presented as \(M\) in Formula 2. \(M\) is row-normalized.

\[
M = \prod_{t=1}^{n-1} W_{X_t,C}D_{CX_{t+1}}^{-1}W_{CX_{t+1}}W_{X_{t+1},C}D_{CX_1}^{-1}W_{CX_1}
\]

(2)

As \(M\) is a \(|X_1| \times |X_1|\) row-normalized matrix, it can be regarded as a transition matrix of a Markov Chain. And the update rule becomes Formula 3.

\[
R_{X_1}^{(h+1)} \leftarrow MR_{X_1}^{(h)}
\]

(3)

However, \(R_{X_1}^{(h)}\) will only converge to a long-run stationary vector \(R_{X_1}^{(s)}\) if \(M\) satisfies irreducibility (i.e., the graph is strongly connected) and aperiodicity (i.e., the graph is non-bipartite). It is done by adding some probability to every element in \(M\) to ensure that it contains only positive probabilities. This makes every node connected to every other node, and thus guarantees that the graph is strongly connected and that it is not bipartite. A damping factor \(\alpha\) and a reservoir of ranks represented by \(U/|X_1|\) are introduced for this purpose. \(U\) is an \(|X_1| \times |X_1|\) unit matrix and \(U/|X_1|\) adds a weight to every edge uniformly. This gives us \(M'\) in Formula 4 and a new update rule as Formula 5.

\[
M' = \alpha M + (1 - \alpha)U/|X_1|
\]

(4)

\[
R_{X_1}^{(h+1)} \leftarrow M'R_{X_1}^{(h)}
\]

(5)

Finally, our MedRank is the stationary ranking distribution \(R_{X_1}^{(s)}\) of type \(X_1\) objects.
5 Experiments and Evaluation

In this section we report the experiments and examine the effectiveness and efficiency of our MedRank algorithm. Five diseases are used, namely AIDS, Diabetes Mellitus Type II (D2), Hepatitis B (HB), Amyotrophic Lateral Sclerosis (ALS) and Rheumatoid Arthritis (RA). The selection of these diseases are based on the reasoning that for the commonly known diseases (i.e., AIDS, D2 and HB) our algorithm should be able to provide the obvious results as well as for the rarely known diseases (i.e., ALS and RA). In the evaluation, we compare MedRank with degree centrality and NetClus. Expert rankings for five diseases were collected from clinical professionals and aggregated, for each disease, into a consensus ranking for benchmarking. All experiments and evaluation are implemented in Visual Studio C# 2008 running on an Intel(R) Core(TM) i3 CPU laptop with a Windows 7 OS and a 4 GB RAM.

5.1 Data Sets

The data sets used in our experiments are the MEDLINE (2010) data set and MeSH (2010) ontology. It is to be noted that in this research, only the bibliographic information of medical literature is considered. The exploration of the rich information contained in article content is left as future work.

5.1.1 MeSH

Medical Subject Headings (MeSH) is a medical thesaurus and controlled semantic vocabulary that is part of the larger Unified Medical Language System (UMLS) thesaurus of NLM. It consists of a set of (57,229) terms naming descriptors that provide formal and explicit specifications of the present biomedical knowledge. Descriptors are arranged both alphabetically and hierarchically as a tree structure. Fig. 3 shows a top level view of the MeSH tree, where the disease category is expanded. Additional qualifiers, such as "Therapeutic Use", can be used to further categorize descriptors.

MeSH is chosen due to the convenience that MEDLINE records are indexed by it. The disease terms can be found in the "C" category. The treatment terms are in the following categories: "Therapeutics", "Anesthesia and Analgesia", "Surgical Procedures, Operative", and "Therapeutic Uses". All chemical substances that are labelled by the qualifier "Therapeutic Use" are also considered as treatments.

5.1.2 MEDLINE

MEDLINE is the premier bibliographic database of NLM. The data set is freely downloadable in XML format with 10GB in size (compressed) from NLM.8 Each MEDLINE record is a reference to an article. As shown in Fig. 4, it contains the bibliographical information about the article, such as article ID (PMID), title ((Article Title)), author list ((AuthorList)) and journal title ((Title)). Further information, such as major diseases and treatments this article is about and which one of the four clinical trial phases (I to IV) the experiments are successful, is also available through the record’s referenced MeSH ontology entries ((MeshHeadingList)). Topics being identified as relevant to the article are called descriptors. They are stored under the (DescriptorName) tag. The value of

9see http://en.wikipedia.org/wiki/Clinical_trial
Table 1: Size of sub-networks in categories

<table>
<thead>
<tr>
<th>Type \ N</th>
<th>ALS</th>
<th>HB</th>
<th>AIDS</th>
<th>D2</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td>7975</td>
<td>33679</td>
<td>48962</td>
<td>50732</td>
<td>70736</td>
</tr>
<tr>
<td>Author</td>
<td>16637</td>
<td>67320</td>
<td>86481</td>
<td>99060</td>
<td>108234</td>
</tr>
<tr>
<td>Journal</td>
<td>1256</td>
<td>2936</td>
<td>4272</td>
<td>3308</td>
<td>3963</td>
</tr>
<tr>
<td>Treatment</td>
<td>383</td>
<td>669</td>
<td>937</td>
<td>1121</td>
<td>1401</td>
</tr>
<tr>
<td>Clinical Trial</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>25256</td>
<td>104609</td>
<td>140657</td>
<td>154316</td>
<td>184339</td>
</tr>
</tbody>
</table>

Table 2: Top 10 influential treatments for AIDS

<table>
<thead>
<tr>
<th>Top 10 Treatments</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Zidovudine/therapeutic use</td>
<td>0.1500</td>
</tr>
<tr>
<td>2 Anti-HIV Agents/therapeutic use</td>
<td>0.1134</td>
</tr>
<tr>
<td>3 Antiretroviral Therapy, Highly Active</td>
<td>0.0855</td>
</tr>
<tr>
<td>4 Antiviral Agents/therapeutic use</td>
<td>0.0655</td>
</tr>
<tr>
<td>5 Anti-Retroviral Agents/therapeutic use</td>
<td>0.0215</td>
</tr>
<tr>
<td>6 Interferon Type I/therapeutic use</td>
<td>0.0147</td>
</tr>
<tr>
<td>7 Didanosine/therapeutic use</td>
<td>0.0121</td>
</tr>
<tr>
<td>8 Ganciclovir/therapeutic use</td>
<td>0.0102</td>
</tr>
<tr>
<td>9 Antineoplastic Combined Chemotherapy Protocols/therapeutic use</td>
<td>0.0101</td>
</tr>
<tr>
<td>10 HIV Protease Inhibitors/therapeutic use</td>
<td>0.0092</td>
</tr>
</tbody>
</table>

Table 3: Top 10 influential treatments for D2

<table>
<thead>
<tr>
<th>Top 10 Treatments</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hypoglycemic Agents/therapeutic use</td>
<td>0.1859</td>
</tr>
<tr>
<td>2 Insulin/therapeutic use</td>
<td>0.0824</td>
</tr>
<tr>
<td>3 Metformin/therapeutic use</td>
<td>0.0379</td>
</tr>
<tr>
<td>4 Thiazolidinediones/therapeutic use</td>
<td>0.0364</td>
</tr>
<tr>
<td>5 Diabetic Diet</td>
<td>0.0340</td>
</tr>
<tr>
<td>6 Sulfonylurea Compounds/therapeutic use</td>
<td>0.0271</td>
</tr>
<tr>
<td>7 Glyburide/therapeutic use</td>
<td>0.0181</td>
</tr>
<tr>
<td>8 Antihypertensive Agents/therapeutic use</td>
<td>0.0176</td>
</tr>
<tr>
<td>9 Thiazoles/therapeutic use</td>
<td>0.0141</td>
</tr>
<tr>
<td>10 Self Care</td>
<td>0.0135</td>
</tr>
</tbody>
</table>

Table 4: Top 10 influential treatments for HB

<table>
<thead>
<tr>
<th>Top 10 Treatments</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Antiviral Agents/therapeutic use</td>
<td>0.1883</td>
</tr>
<tr>
<td>2 Lamivudine/therapeutic use</td>
<td>0.0915</td>
</tr>
<tr>
<td>3 Liver Transplantation</td>
<td>0.0602</td>
</tr>
<tr>
<td>4 Interferon-alpha/therapeutic use</td>
<td>0.0419</td>
</tr>
<tr>
<td>5 Interferon Type I/therapeutic use</td>
<td>0.0381</td>
</tr>
<tr>
<td>6 Reverse Transcriptase Inhibitors</td>
<td>0.0363</td>
</tr>
<tr>
<td>7 Interferons/therapeutic use</td>
<td>0.0295</td>
</tr>
<tr>
<td>8 Vaccination</td>
<td>0.0292</td>
</tr>
<tr>
<td>9 Interferon Alfa-2b/therapeutic use</td>
<td>0.0279</td>
</tr>
<tr>
<td>10 Phosphonic Acids/therapeutic use</td>
<td>0.0201</td>
</tr>
</tbody>
</table>

Table 5: Top 10 influential treatments for ALS

<table>
<thead>
<tr>
<th>Top 10 Treatments</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Neuroprotective Agents/therapeutic use</td>
<td>0.0576</td>
</tr>
<tr>
<td>2 Riluzole/therapeutic use</td>
<td>0.0539</td>
</tr>
<tr>
<td>3 Antioxidants/therapeutic use</td>
<td>0.0326</td>
</tr>
<tr>
<td>4 Insulin-Like Growth Factor I/therapeutic use</td>
<td>0.0320</td>
</tr>
<tr>
<td>5 Respiration, Artificial</td>
<td>0.0295</td>
</tr>
<tr>
<td>6 Activities of Daily Living</td>
<td>0.0280</td>
</tr>
<tr>
<td>7 Thyrotropin-Releasing Hormone/therapeutic use</td>
<td>0.0246</td>
</tr>
<tr>
<td>8 Excitatory Amino Acid Antagonists</td>
<td>0.0239</td>
</tr>
<tr>
<td>9 Creatine/therapeutic use</td>
<td>0.0239</td>
</tr>
<tr>
<td>10 Positive-Pressure Respiration</td>
<td>0.0218</td>
</tr>
</tbody>
</table>

Table 6: Top 10 influential treatments for RA

<table>
<thead>
<tr>
<th>Top 10 Treatments</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Antirheumatic Agents/therapeutic use</td>
<td>0.2420</td>
</tr>
<tr>
<td>2 Antibodies, Monoclonal/therapeutic use</td>
<td>0.0709</td>
</tr>
<tr>
<td>3 Methotrexate/therapeutic use</td>
<td>0.0546</td>
</tr>
<tr>
<td>4 Anti-Inflammatory Agents/therapeutic use</td>
<td>0.0303</td>
</tr>
<tr>
<td>5 Anti-Inflammatory Agents, Non-Steroidal</td>
<td>0.0266</td>
</tr>
<tr>
<td>6 Sulfasalazine/therapeutic use</td>
<td>0.0160</td>
</tr>
<tr>
<td>7 Penicillamine/therapeutic use</td>
<td>0.0156</td>
</tr>
<tr>
<td>8 Gold Sodium Thiouimate/therapeutic use</td>
<td>0.0131</td>
</tr>
<tr>
<td>9 Glucocorticoids/therapeutic use</td>
<td>0.0116</td>
</tr>
<tr>
<td>10 Immunosuppressive Agents/therapeutic use</td>
<td>0.0103</td>
</tr>
</tbody>
</table>

5.3 Evaluation

This section reports the evaluation of the proposed MedRank algorithm. It includes the aggregation of expert consensuses from collected expert rankings and the comparisons of MedRank against two baseline methods.

5.3.1 Expert Consensus Aggregation

Since there is no ground truth for evaluation, expert opinions are used as an alternative. They are aggregated into a consensus ranking for each of the five diseases for benchmarking.

Expert Ranking Collection We distributed 1,500 questionnaires to the experts of state hospitals and medical research institutions over four countries, and received 106 valid responses from five hospitals in mainland China and Taiwan. System ranked top-10
most influential treatments for five diseases are listed respectively in the questionnaire. Participants were asked to answer on only the diseases they were familiar with. They were asked to provide their own ranking lists for a disease, if they did not agree with the system ranking. The sizes of the collected feedback are shown in Table 7.

Concordance Measurements For the purpose of evaluation, we need to measure if two ranking lists, say S and T, are concordant or agree with each other. This is the problem of comparing partial rankings (Fagin et al. 2004), i.e., one list may contain elements not found in the other list, as questionnaire participants had the option to provide their own lists with items not in the system ranking. Total rankings are studied in classical rank correlation methods such as Kendall’s τ (Kendall 1948) and Spearman’s ρ (Spearman 1904). Webber et al. (2010) have classified measurements that compare two lists into four categories based on whether a measurement is applicable to partial rankings and whether it considers top-weightedness, i.e., the top of the list is weighted higher than the tail.

Fagin et al. (2004) proposed several measurements for top-k partial rankings. We choose their extension of Kendall’s τ to represent the class of measurements that are not top-weighted. The method compares every pair of elements in the union set of elements appear in the ranking lists. There are four cases to consider for penalizing displacements. The sum of all penalties normalized by the number of all possible pairwise comparisons gives a degree ρ of displacement in the $[0,1]$ interval. We define Fagin’s τ as $1 - \rho$ for measuring concordance. However, the method disregards the position where the displacement occurs.

As Webber et al. (2010) argues that the top of the list is often considered more important than the tail in top-K rankings, we adopt the intersection metric of Fagin et al. (2004) (referred as AO) that captures this top-weightedness as the main measurement.

$$AO(S, T, K) = \frac{1}{K} \sum_{d=1}^{K} \frac{|S_d \cap T_d|}{d}$$

where K is the top-K ranked items of interest; S and T are two ranking lists; S_d and T_d denotes the set of elements in S from the first up to the d^{th} position; T_d is defined in the same way.

AO is the average over the sum of the weighted overlaps of the first d elements in both lists. The score is in the interval of $[0,1]$, where 0 means no items shared by two lists and 1 means two lists are identical. It can be seen from Formula 6 that the weight up to the d^{th} element decreases with the increase of d. Thus, it is top-weighted. Also, AO is lenient to a displacement occurring at two very close positions, say the 2^{nd} position in list S and 3^{rd} position in list T, but harsh to those that are far apart (as the score will not be granted until the item has been found in both lists at the d^{th} position).

Expert Agreement It is important to measure the compactness or degree of agreement among expert rankings, because it makes more sense to find a consensus among them if they tend to agree with each other. The compactness is calculated using Formula 7 adapted from (Xiaoyun et al. 2009). In the formula, x_i and x_j are any two lists and m is the number of all ranking lists. It calculates the average over the pairwise distance (using AO) between ranking lists. As AO is a measurement of concordance, the higher the pairwise AO is, the higher the overall concordance would be.

$$compa$\text{ntess} = \sqrt[2]{\frac{\sum_{i=1}^{m} \sum_{j=1}^{m} (x_i - x_j)^2}{m(m-1)}}$$

The results are illustrated in Fig 6. The figure shows that the degrees of agreement among expert rankings are relatively low in Diabetes Mellitus Type II (66%) as well as Hepatitis B (73%). It can also be seen that the degrees for the other three diseases are relatively high (above 84%). These results indicate that the aggregated expert consensuses for AIDS, ALS and RA are more indicative than D2 and HB for evaluating MedRank and baseline methods.

Ranking Aggregation Expert ranking lists are aggregated into a consensus list per disease. We adopt a 2-approximation aggregation algorithm proposed by Chin et al. (2004). This heuristic algorithm constructs a single ranking from a list of partial rankings with respect to the maximization of the consensus. Table 8 shows the aggregated expert rankings for five diseases, where integer denotes the position of a treatment originally in the system ranking. It is to be noted that for Hepatitis B, three treatments have been removed from all the rankings (of the system and baselines) in the evaluation. This is caused by the sub/super MeSH categories that are considered as the same treatment approach by the experts.

5.3.2 MedRank vs. Expert Rankings

System rankings have been first evaluated, for each disease, against expert rankings one by one to give a sense of their concordance with individual expert opinions. The results are illustrated in Fig. 5 (a)-(e). The average and standard deviation of AO and Fagin’s τ are presented as dotted lines. Generally, system rankings have reasonably high concordance with
expert rankings, with the average AO and Fagin’s τ above 0.7 except for Fagin’s τ in RA. The results are especially good for AIDS, Amyotrophic Lateral Sclerosis (ALS) and Rheumatoid Arthritis (RA), where average AOs are above 0.83 with standard deviation around 0.1. Also, for these three diseases, AO scores are almost all higher than Fagin’s τ. This suggests that most displacements occur close to the tail of the list or just a few positions away from where an item is supposed to be. By contrast, AO scores are mostly lower than Fagin’s τ for Hepatitis B (HB). This suggests the opposite case. By looking at the aggregated expert ranking for HB in Table 8 presented earlier, we can see that the positions of Treatment item 3 are far apart in the system ranking and expert aggregated ranking (i.e., 3 vs. 6). As for Diabetes Mellitus Type II (D2), it is a mixture of above two cases. Overall, MedRank gives pretty good rankings for AIDS, ALS and RA.

5.3.3 MedRank vs. Baselines

We report the evaluation of our MedRank algorithm against two baseline methods, i.e., degree centrality and NetClus.

Baseline Settings Degree centrality counts, for every treatment in a disease sub-network, the degree of the treatment node. It is equivalent to frequency counting, i.e., counting the number of articles linked to the treatment. From these frequencies, a ranking list of treatments can be obtained. The concordance between the ranking lists and expert consensuses is measured by AO and Fagin’s τ. They are presented as Degree Centrality in Fig. 7 and Fig. 8 respectively.

As NetClus is a ranking-based clustering algorithm, we have experimented on the cases of $k = 2$ and $k = 5$, where k is the number of clusters. A 5-disease sub-network of the same five diseases used for MedRank is extracted for the case of $k = 5$ and all possible 2-disease sub-networks selected from these five diseases are extracted for the case of $k = 2$. In addition to our ranking criteria, other attribute types, such as “Disease” and “Term” (extracted from article title with stemming (Porter 1980)) have been tried to help clustering. Best results have been obtained by using “Term” with prior probabilities (as used also by Sun, Yu & Han (2009)). Terms have been chosen based on their degree centrality with common terms such as “patient” and “disease” removed. The results for the 5-disease sub-network is presented as $NC 5$ in Fig. 7 and Fig. 8, while $NC 2$ Avg denotes the average concordance of a disease over all 2-disease sub-networks that contain the disease.

Analysis From Fig. 8 we can see that degree centrality has relatively low Fagin’s τ scores (mostly about half of MedRank’s scores) but better AO scores
in Fig. 7. This suggests that its outputs have many displacements but the portion occurring at the top of the lists is not high. When $k = 5$ NetClus is not able to give good clusters, as D2 treatments dominate the rankings. Thus only the ranking in the D2 cluster has high concordance score in Fig. 7 and Fig. 8. NetClus performs slightly better when $k = 2$, though it can still be seen from both figures that D2 and RA treatments dominate the ranking. Overall, the figures show that MedRank outperforms degree centrality and NetClus.

6 Discussions

In this section we discuss the effectiveness, efficiency and implications of MedRank.

6.1 Effectiveness and Efficiency

Section 5.3 presented how our system rankings are evaluated against the “consensus” rankings aggregated from the expert rankings and the baseline methods. Figs. 7 and 8 have shown that the proposed network-based ranking algorithm MedRank is effective as it outperforms the baselines.

We include a chart in Fig. 9 to show the scalability and efficiency of the ranking phase. The sub-networks corresponding to the selected five diseases are ordered according to their sizes, i.e., total number of nodes (Table 1). The times spent on ranking the sub-networks using MedRank are measured in seconds. It can be seen from this empirical analysis that the computational cost for the ranking phase is linear.

6.2 Implications of MedRank

As a few doctors mentioned in their feedback that although there may be consensus among clinical professionals on what treatment to be applied to a disease (e.g., the “cocktail” method for AIDS), whether a treatment is better than another should be judged case by case. This goes in line with the motivation of our research. Our intention is not to compete with the best medical experts in giving clinical advices but to show a methodology like this can provide ranking on the influential treatments. Even if the ranking may not always be the most authoritative one, it provides much value in showing information technology can efficiently filter out noises and derive highly valued candidate treatments for further study.

This study has been focused on the medical domain based on tagged medical literature. MedRank presents an interesting methodology for ranking an information network based on the available category labels (which is different from RankClus and NetClus), as well as their associated, multi-type semi-structured entities (which is different from PageRank and PopRank). Therefore, it represents a new and interesting method for ranking categorized entities in multi-dimensional information networks. The success of categorized entity ranking in medical literature domain suggests a new methodology and a potential success in other domains, as long as entities and their relationships can be identified. This opens an interesting direction for further study.

7 Conclusions

In a general medical information network, objects such as patients, clinical trials, symptoms, diseases, medical journal articles, or treatments, can all be linked together through different kinds of referential relationships. Then by applying a network-based ranking algorithm, we can use a query mechanism such as the slash-tag search engine10 to search for top-ranked objects according to their categories (i.e., tags). In this paper we demonstrated a pioneer research for ranking treatments for given diseases based on a medical information network.

The contribution of this research is threefold. Firstly, we extracted heterogeneous objects from medical literature as an information network for medical knowledge management. Secondly, we proposed a new network-based ranking algorithm, namely MedRank, to rank the most influential treatments. Thirdly, we successfully conducted a survey with clinical practitioners to collect expert rankings for benchmarking. The proposed algorithm has been evaluated against two baseline methods. It has been shown that MedRank is effective and efficient.

For future research, we will extend this network-based ranking approach to other domains. Investigations on ranking emerging medical treatments for new and unknown diseases from medical literature will also be considered.

8 Acknowledgements

We express our gratitude to Professor Len Gray (School of Medicine, University of Queensland) for his insightful comments and discussions on this research work. We thank Dr. Chiu, Allen Wen-Hsiang, Dr. Liu, Chi-chun, and Mr. Liang, Jun for organising questionnaire distribution and data collection. We also thank the doctors from the First Affiliated Hospital and the Second Affiliated Hospital of Medical School of Zhejiang University, the First People’s Hospital of Hangzhou, the Taipei Medical University Hospital, and the Taipei City Hospital for their valuable feedback.

This work was supported in part by the U.S. Army Research Laboratory under Cooperative Agreement No. W911NF-09-2-0053(NS-CTA), US NSF IIS-0905215 and IIS-1017362, and U.S. AFOSR MURI award FA9550-08-1-0265.

References

10http://blekko.com/

Easley, D. & Kleinberg, J. (2010), Networks, crowds, and markets: Reasoning about a highly connected world, Cambridge Univ Pr.

Kendall, M. (1948), Rank Correlation Methods, Charles Griffin & Co.

