
Recursive Partitioning Method for Trajectory Indexing

Elizabeth Antoine, Kotagiri Ramamohanarao, Jie Shao and Rui Zhang

Department of Computer Science and Software Engineering
The University of Melbourne, Victoria

Australia
Email: {eantoine, rao, jsh, rui}@csse.unimelb.edu.au

Abstract

A trajectory is defined as the record of time-varying
spatial phenomenon. The trajectory database is an
important research area that has received a lot of in-
terest in the last decade, with the objective of tra-
jectory databases being to extend existing database
technology to support the representation and query-
ing of moving objects and their trajectories. Querying
in trajectory databases can be very expensive due to
the nature of the data and the complexity of the query
processing algorithms. Given also that location-aware
devices, like the GPS, are present everywhere these
days, trajectory databases will soon face an enormous
amount of data. Consequently the performance in the
presence of a vast amount of data will be a significant
problem and efficient indexing schemes are required
to support both updates and searches efficiently.

This paper provides the methodology for using
the recursive partitioning technique for indexing tra-
jectories in the unrestricted space, which is called
the Recursively Partitioned Trajectory Index (RPTI).
RPTI uses the two-level indexing structure, as does
the state of art indexing scheme, SETI, and main-
tains separate indices for the space and time dimen-
sions. We present the algorithms for constructing
the RPTI and the algorithms for updates that in-
clude insertion and deletion. We also provide the
results of the experimental study on the RPTI and
have demonstrated that RPTI is better than SETI in
handling trajectory-based queries and is competitive
with SETI in handling coordinate-based queries. The
structure of RPTI can be easily implemented by using
any of the existing spatial indexing structures. The
only design parameters required are the standard disk
page size and maximum level of recursive partition-
ing.

Keywords: Indexing Trajectories, Recursive Pari-
tioning Method, Trajectory and Coordinate-based
Queries

1 Introduction

Location-aware devices such as the GPS, which is the
sequel to satellite and atomic clock technologies, have
led to a number of new applications, such as fleet
management and location-based solutions. Mobile
phones that are E911-enabled are used to locate the
mobile phone user with a variation of a few hundred
meters, which is helpful in providing location infor-

Copyright c©2010, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-First Australasian Database Con-
ference (ADC2010), Brisbane, Australia, January 2010. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 104, Heng Tao Shen and Athman Bouguettaya,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

mation during emergencies. In addition to outdoor
location devices like the GPS, there are devices for
determining the location indoors. The 3D ultrasonic
location system [Ward and Jones, 1997], which is low-
power and wireless, is one such system, and has led to
new applications such as context-aware applications
that respond to the user as he/she moves around.

Since the location-aware devices are used ex-
tensively these days, trajectory (or moving object)
databases will soon be faced with the task of manag-
ing an enormous amount of data. The performance
of the trajectory databases will significantly decline in
the presence of a vast amount of data as the sequen-
tial access is time-consuming. Indexing structures are
efficient in handling large data sets in various applica-
tion domains, as they allow random look-ups; hence,
indexing structures would be efficient in handling tra-
jectory data as well. Traditional indexing structures
like B-trees [Comer, 1979] are not efficient in order-
ing the multidimensional data and therefore cannot
be used in spatial and trajectory databases.

Extensive work has been done on spatial indexing
and R-tree variations have been found to be efficient
in query processing [Guttman, 1984, Bentley and
Friedman, 1979, Sellis et al., 1987, Beckmann et al.,
1990, Kamel and Faloutsos, 1994]. In the domain of
trajectory indexing, R-tree variations and extensions,
such as, the three dimensional R-tree [Theodoridis
et al., 1996], the TB tree [Pfoser et al., 2000], the STR
tree [Pfoser et al., 2000] and the SETI tree [Chakka
et al., 2003] have been introduced for indexing past
locations of moving objects. In this paper we exam-
ine one such indexing structure that decouples the
indexing of the space dimension from the time di-
mension and uses the recursive partitioning method
for indexing in the space dimension. Similar to the
SETI structure, the RPTI uses the R ∗-tree to index
the time intervals.

The sequel of the paper is organized as follows.
Section 2 describes the related work, data model and
queries. Section 3 explains the RPTI structure. Sec-
tion 4 provides the algorithms for the RPTI structure.
Section 5 details the experimental study of the RPTI
structure. Section 6 gives the conclusion.

2 Related Work, Data Model and Queries

2.1 Related Work

In this section, we will be discussing some of the in-
dexing structures that record past locations of the
moving objects and those that organize motion in an
unrestricted space. R-tree and its variations are found
to be efficient in handling multidimensional data and
have found their way into the commercial database
systems. Hence, we will be discussing some of the
R-tree variations and extensions that are used in in-
dexing trajectories. We will be discussing the three

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

37

dimensional R-tree [Theodoridis et al., 1996] and the
TB trees [Pfoser et al., 2000] which are efficient in
handling coordinate-based queries. We will also dis-
cuss the SETI [Chakka et al., 2003] structure, which
partitions the space into hexagons and then indexes
the time dimension for every hexagon. This is use-
ful in analysing the recursive partitioning of space in
indexing trajectories.

The three dimensional R-tree [Theodoridis et al.,
1996] are based on the R-tree index, which is widely
used for indexing of spatial data. It is based on the
previous efforts of the authors with regard to multi-
media application modelling. The proposed indexing
schemes was the first step towards a new direction of
spatio-temporal indexing, while research has mainly
focused on content-based image indexing - i.e., fast
retrieval of objects using their content characteristics
(colour, texture, shape). A three dimensional R-tree
is a straightforward method of indexing trajectories.
This method extends the R-tree to be used in a three
dimensional space, with time as an extra spatial di-
mension (2D space + 1D time). Three dimensional R-
trees are designed to handle coordinate-based queries,
like the time-slice and time-interval queries, and is in-
efficient in answering trajectory-based queries. Based
on the experimental study in [Chakka et al., 2003],
SETI is shown to outperform the three dimensional
R-tree. SETI partitions the space into static non-
overlapping partitions and, for each partition, it uses
the R ∗-tree to build a sparse index over the time di-
mension [Chakka et al., 2003].

The TB-tree, introduced in [Pfoser et al., 2000], is
fundamentally different from the access method they
previously discussed (STR-tree [Pfoser et al., 2000]).
The STR-tree introduces a new insertion/split strat-
egy to achieve trajectory orientation, while not com-
promising the space discrimination capabilities of the
index too greatly. Apart from this, the STR-tree is
an R-tree-based access method. An underlying as-
sumption when using the R-tree is that all inserted
geometries are considered as parts of trajectories and
the segments are stored independently in the R-tree
and the STR-tree structures.

The TB-tree, provides an access method that
strictly preserves trajectories, such that a leaf node
only contains segments belonging to the same trajec-
tory, thus the index is best understood as a trajectory
bundle. As a drawback, line segments that are not
part of the same trajectory but lie spatially close will
be stored in different nodes. As the overlap increases,
the space discrimination decreases and, thus, the clas-
sical range query cost increases. However, by giving
up on space discrimination, there is a gain in trajec-
tory preservation [Pfoser et al., 2000]. The structure
of the TB-tree is actually a set of leaf nodes, each
containing a partial trajectory, connected by a dou-
bly linked list that preserves trajectory evolution. By
visiting an arbitrary leaf node, these links allow us to
retrieve the whole or part of the trajectory at minimal
cost.

In spite of its clear advantages on trajectory-based
query processing, the TB tree has a crucial drawback
in its insertion strategy, as new trajectory data are
always inserted to the right end of the tree, leading
its performance to depend on the order of the data
insertion. When an object enters an area where the
position transmission system does not work, its infor-
mation is locally stored and later transmitted to the
central server, while other moving objects would have
transmitted their positions. This violates the assump-
tion that the trajectory data are inserted in the index
in a purely chronological order [Manolopoulos et al.,
2005]. Deletions are often ignored in the trajectory
indexing structures and this is true with the TB trees
as well. However, trajectories of objects that are no

longer useful need to be deleted and this leaves holes
in the TB-tree structure.

The Scalable and Efficient Trajectory Index
(SETI) [Chakka et al., 2003] partitions the spatial di-
mension into static, non-overlapping partitions and,
for each partition, it builds a sparse index over the
time dimension. Any spatial index can be used for
this sparse index, including the R-tree and its vari-
ants, like the R ∗-tree. The boundaries of the spa-
tial dimensions remain constant or change very slowly
over the lifetime of the trajectory data set growth,
whereas the time dimension is continually increas-
ing. As the extent of the spatial dimensions does not
change, an indexing structure could partition the spa-
tial dimensions statically however, the number of par-
titions should be calculated prior to the processing.
Within each spatial partition, the indexing structure
only needs to index lines in a 1D (time) dimension.
Consequently, such an approach will not exhibit the
rapid degradation in index performance that is gen-
erally observed for 3D indexing techniques.

Each trajectory segment is stored as a tuple in a
data file, with the restriction that any single data page
only contains trajectory segments that belong to the
same spatial cell. The lifetime of a data page is de-
fined as the minimum time interval that completely
covers the time-spans of all the segments stored in
that page. The lifetime values of all pages that are
logically mapped to a spatial cell are indexed using
an R ∗-tree [Chakka et al., 2003]. These temporal in-
dices are sparse indices, as only one entry for each
data page is maintained instead of one entry for each
segment. Using sparse indices has two distinct ad-
vantages: there are smaller index overheads and an
improved insertion performance [Chakka et al., 2003].
The temporal indices also provide the temporal dis-
crimination in searches.

There are several advantages for this technique
and some are given below. As the objects that are
actually indexed are one-dimensional time lines, the
indexing structure does not suffer from the curse of di-
mensionality [Berchtold et al., 1998], which causes the
performance of indexing structures to degrade rapidly
as the number of dimensions increases. Updates to
trajectories tend to add new segments to the ends of
existing trajectories. To support high append rates,
SETI keeps the last location of each object in an in-
memory front-line structure. When a new location
update for an object is available, the last position of
that object in the front-line structure is looked up
and adds the trajectory segment to the SETI index.
As only a sparse R ∗-tree index is used on the time
dimension, such updates are very fast.

The index scales well to handle large trajectory
data sets because of the use of multiple sparse indices.
SETI can be viewed as a logical indexing structure
that can be built on top of existing spatial index-
ing techniques, such as an R-tree. Consequently, im-
plementing SETI is much easier than implementing
a new physical indexing structure. In SETI, spatial
discrimination is maintained by logically partitioning
the spatial extent into a number of non-overlapping
spatial cells. Each cell contains only those trajectory
segments that are completely within the cell. If a tra-
jectory segment crosses a spatial partitioning bound-
ary, then that segment is split at the boundary and
inserted into both cells. We provide the data model
and discuss on the query processing in the following
sections.

2.2 Data Model

When an object, in this example - a car, moves around
space; the successive locations of the car are recorded

CRPIT Volume 104 - Database Technologies 2010

38

at specific time instances using the location-aware de-
vices. The locations of the object are connected to
form a sequence of line segments using the interpola-
tion methods. The set of line segments (or polyline)
represents the trajectory of the moving point object
and is illustrated in Figure 1.

Figure 1: The Locations of the Spatial Object and the
Corresponding Trajectory [Pfoser et al., 2000]

The motion of an object is approximated as the
series of line segments where each line segment con-
nects two consecutive update positions of the ob-
ject [Güting et al., 2000, Kollios et al., 1999, Papadias
et al., 2000, Pfoser et al., 2000, Pitoura and Samaras,
2001, Saltenis et al., 2000]. Each line segment ‘s’ is
represented by its segment id ‘sid’ and the connected
line segments of an object are called its trajectory,
and are identified by its unique trajectory id ‘tid’.
The representation of a trajectory (trj) is stated for-
mally in [Chakka et al., 2003].

A trajectory is represented as:

trj (tid, (u0, u1 , u2 , . . . , un , . . .))

(u0, u1, u2, . . . , un, . . .) is a sequence of points repre-
senting the positions of the moving object. Each point
ui is given by (xi, yi, ti) where (xi, yi) represents the
position of the moving object in space recorded at the
time ti. (u0, u1, u2, . . . , un, . . .) are sequenced in the
increasing order of time (ui < ui+1).

The trajectory segment of an object is represented
by:

si (tid, sid, ui−1, ui)

(ui−1, ui) are the two update positions of the object
and si represents the line segment that connects the
two update positions. The insertion procedure of the
RPTI structure has ui as its input parameter and the
procedure constructs the line segment based on the
previous location ui−1 and inserts the new line seg-
ment si, as represented above with some additional
variables. These will be discussed in the following
sections. Given the above formal definition of trajec-
tories, we provide a brief note on query types in the
next section.

2.3 Queries

Querying in trajectory databases can be very expen-
sive due to the nature of the data and the complex-
ity of the query processing algorithms. Given also
that location-aware devices, like the GPS, are ubiqui-
tous these days, trajectory databases will soon face an
enormous amount of data. Consequently the perfor-
mance in the presence of a vast amount of data will be
a significant problem. Queries on moving objects can

be broadly classified into two categories: queries that
ask questions about the future positions of moving
objects; and queries that ask questions about the his-
torical positions of moving objects [Pfoser et al., 2000,
Theodoridis et al., 1996, Frentzos, 2003, De Almeida
and Güting, 2005, Chakka et al., 2003]. We focus
on the queries relating to the historical positions of
moving objects.

The historical queries are further classified
into coordinate-based queries and trajectory-based
queries. Coordinate-based queries include the time-
slice queries, which select all the objects that lie
within a given area at a given time instant; time-
interval queries, which include the objects that lie
within a given area and given time period; and near-
est neighbour queries. The trajectory-based queries
are further classified into topological queries and nav-
igational queries.

Topological queries examine the whole or part of
the trajectory of an object. For example, the pred-
icate ‘collision’ examines two trajectories if they in-
tersect in a given area at a specific time instant. The
navigational query involves the information derived
from the trajectories, such as the speed and the head-
ing of an object. The average or top speed of an ob-
ject is obtained by the fraction of travelled distance
over time. The heading or the direction of travel
of the object is computed by determining the vector
between two specified positions [Pfoser et al., 2000].
The following are examples of the coordinate and
trajectory-based queries; and their respective SQL
statements [Erwig and Schneider, 2002].

Coordinate-based queries:

Time-interval Query: “find all objects that are
present within a given area during a given time in-
terval” (range query in space and time dimension).
Example for time-interval queries is given below.
‘Id’ represents the unique identifier of the cars. ‘Line’
is the additional information that is stored about the
travel; ‘trajectory’ as already mentioned, represents,
the moving path of the cars. The above query rep-
resents the query window at the time dimension. It
extracts the information about all the cars that were
present at the time period ‘P’, without any clause in
the space dimension.

Q1: Where exactly were the cars during the time
period P?

SELECT Id, Line, trajectory AS Stretch
FROM Cars WHERE Trip present P;

Time-slice Query: “find all objects that are present
within a given area during a given time instant”
(range query in space with a zero extent in time di-
mension). Example for time-slice queries is given be-
low.

‘Loc’ represents a point (x, y) in the 2D space and
time instant ‘I’ represents the point (t) at the time
dimension. It extracts the ‘Id’ of all the cars present
at a particular location (Loc) in the space dimension
and at a particular time instant (I) in the time di-
mension.

Q2: Give the IDs of all the cars present in the
location X at time instant I?

SELECT Id from Cars C WHERE Trip
passes Loc AND Trip present I;

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

39

Trajectory-based queries:
“find the average speed of a moving object given its
trajectory id”. Example for trajectory query is given
below.

‘Car’ is a relation and ‘h’ represents the car that has
the Id, ‘C’. The following query retrieves the whole
trajectory information for the car ‘C’ and calculates
the average speed of the car given by ‘average speed’
and ‘h.route’ represents the trajectory Id.

Q1: What is the car’s (C) average speed?

SELECT h.route, average speed FROM
Car h WHERE h.id = C;

In order to answer the queries efficiently, the data
needs to be represented appropriately. Due to the
tremendous increase in the amount of data that are
stored in the database system, the sequential access
becomes time-consuming and the need for an efficient
storage and access mechanism arises. Indexes pro-
vide the basis for rapid random look-ups and, for
the indexing to be worthwhile, the process of cre-
ating the index must not be time-consuming, other-
wise the queries could be answered more efficiently
without an index. While dealing with the proxim-
ity queries in spatial data, the database management
system needs to sort the spatial data efficiently, based
on the space occupied by the data, to enable random
loop-ups. Such techniques are known as spatial in-
dexing methods [Samet, 1995]. The same is true for
trajectory queries.

3 Recursively Partitioned Trajectory Index
(RPTI)

In trajectory data sets that represent the past loca-
tions of moving objects, the extent of the spatial di-
mensions change very slowly over the lifetime of the
trajectory data set growth, whereas the time dimen-
sion is constantly increasing. Similar to the SETI
structure [Chakka et al., 2003], the RPTI indexing
structure partitions the space by exploiting the static
space dimension. Instead of partitioning the space
into non-overlapping spatial cells, space is partitioned
hierarchically. The number of levels is denoted by L
and at every level l(l = 0, . . . , L − 1), the number of
partitions is 4l and each level is composed of 2l − 1
equally spaced lines in each dimension. A line seg-
ment intersected by any partitioning line of level l
belongs to level l − 1.

At each level, for every partition an indexing struc-
ture like the R ∗-tree is used to index lines in the time
dimension. The number of R ∗-trees at every level is
given by 4l. Similar to the SETI structure, the RPTI
indexing mechanism achieves good spatial and tem-
poral discrimination. Discrimination represents the
ability to identify the candidate set of index entries
with few false hits. The Recursively Partitioned Tra-
jectory Index (RPTI) structure is illustrated in Fig-
ure 2. Each segment of the trajectory is stored as
a tuple in the level files. The insertion and deletion
strategies are explained in detail in the following sec-
tion. For each level file, a space-filling curve, such as
the z-ordering curve [Orenstein and Merrett, 1984], is
used to calculate the z-order value for each line seg-
ment. The line segment is stored as a tuple in its
corresponding level file, with the restriction that any
data page will only contain line segments that belong
to the same partition.

Figure 2: Recursively Partitioned Trajectory Index (RPTI)
Structure

For every partition, an R ∗-tree is used to index the
life− time of every data page. The life− time of ev-
ery page covers the time-spans of all the line segments
stored in that page. Any spatial indexing structure
other than R ∗-tree can be used for this purpose. As
mentioned in the SETI structure [Chakka et al., 2003],
the R ∗-tree index is sparse as there is only one entry
for each data page [Chakka et al., 2003]. This makes
the searching efficient but, during insertions and dele-
tions, the life time of the data page might change. If
the life time of a data page changes, then the corre-
sponding R ∗-tree should be updated.

4 Algorithms for RPTI Structure

This section explains in detail the insertion, dele-
tion and search process for the RPTI structure and
presents the relevant algorithms.

4.1 Insertion

RPTI maintains a front − line structure similar to
the one presented in SETI, which has the last update
location of every moving object. The last update po-
sition of all the trajectories is maintained in a hash
structure that is indexed by the trajectory id ‘(tid)’,
which is unique for every moving object.

When there is an update in the position of the
moving object, say ‘obj’, the hash structure is used
to get the information of the last updated position
based on its ‘tid’. A line segment is constructed con-
necting the last update position and the new posi-
tion, and this is inserted into the RPTI structure.
The level of the line segment ‘Level’, with its z-order
value ‘zvalue’, is computed and the new line segment
is inserted into the corresponding level file. The line
segment tuple inserted into the level files is of the
form:

si (tid, sid, ui−1, ui, zvalue)

The SETI structure results in line segments inter-
secting spatial cell boundaries and is handled by split-
ting the line segments in the space and time dimen-
sions. However, splitting the line segments leads to
additional computation during updates and searches,
where the split line segments have to be merged. The
number of partitions is an important factor in any
partitioning strategy that affects the area covered by
the partitions. If the partitions cover large areas, then
the space discrimination of the index is reduced. This

CRPIT Volume 104 - Database Technologies 2010

40

can, however, be tolerated when the number of line
segments that fall inside the partitions is small. If
the partitioning is done very finely, then the num-
ber of segments that cross the boundary of the spa-
tial cells increases, which increases the computational
time [Chakka et al., 2003] for SETI.

RPTI structure avoids the splitting of line seg-
ments by inserting the line segments at their appro-
priate level, and as is illustrated in Figure 3. The
line segments of a given trajectory may be found
in more than one level. An in-memory structure
called track − trajectory is maintained to hold the
information about every trajectory. The tuple in-
serted to the track − trajectory file is of the form
(tid, Level, zvalue). When a new line segment is in-
serted to the RPTI structure, the track − trajectory
is consulted; no updates occur if the level file and z-
order value for the trajectory matches with the level
file and z-order value of the new line segment, other-
wise a new tuple with a trajectory id, level file and
z-order value is inserted into the track − trajectory.
The updates also occur if the ‘tid’ is not found in the
track−trajectory file. More than one entry for a tra-
jectory denotes the distribution of the line segments
of the corresponding trajectory over the level files.

By doing this, the whole trajectory can be re-
trieved by consulting the track − trajectory file and
the problem of a line segment spanning over mul-
tiple partitions is eliminated; a problem which is
prevalent in the SETI structure. Such a track −
trajectory structure can also be maintained for SETI
but the splitting of line segments cannot be avoided,
which increases the computational time for handling
trajectory-based queries that require the whole or
part of the trajectory. As mentioned in [Chakka et al.,
2003], about 8% of the line segments cross the parti-
tion boundaries and this increases not only the index
size but also leads to additional computation, which
is eliminated in RPTI.

The updates to the corresponding R ∗-tree do not
happen frequently. It is only updated when the in-
serted line segment tuple falls in a new data page.
As already mentioned, R ∗-tree is used to index only
the life − time of data pages and, hence, there are
infrequent updates to the R ∗-trees. However, if the
insertion changes the life−time of the data page, the
corresponding index entry in the R ∗-tree is updated.
Algorithm 1 illustrates the insertion process.

Figure 3: Insertion in RPTI

Algorithm 1: InsertSegment

input: New position ‘ui’ of object ‘obj’,
Trajectory id ‘tid’ of object ‘obj’

begin
Consult front− line and retrieve last
position ‘ui−1’ using ‘tid’;
if no entries found for ‘tid’ then

Insert the tuple (tid, ui) in front− line;
exit;

end
Insert the tuple (tid, ui) in front− line;
Construct new segment ‘si’ connecting last
and new positions.;
Compute ‘Level’ and ‘zvalue’ for si ;
/* (see Section 3) */
old− lifetime← life time of data page
where si is to be inserted ; /* (see
Section 3) */
Insert tuple ‘si’ (tid, sid, ui−1, ui, zvalue)
to level file ‘Level’;
new − lifetime← life time of data page
after insertion ; /* (see Section 3) */
Consult track − trajectory and retrieve the
tuple for trajectory id, ‘tid’;
if no entries found for ‘tid’ then

Insert tuple (tid, level, zvalue) ;
else

for each entry that represent ‘tid’ do
if level in each entry 6= Level AND
z-order in each entry 6= zvalue then

Insert tuple (tid, level, zvalue) ;
end

end
end
if old− lifetime 6= new − lifetime then

Consult the corresponding R ∗-tree
based on ‘Level’ and ‘zvalue’;
if no R ∗-tree found then

Construct R ∗-tree with index entry
(new −
lifetime, ptr to the datapage)

else
Retrieve index entry old− lifetime
and update with new − lifetime;

end
end

end

4.2 Deletion

Deletion of a trajectory can be efficiently done us-
ing the RPTI structure. Deletion is often ignored
while proposing a trajectory index because of the as-
sumption that deleting the trajectory of a moving
object is meaningless after the transmitted positions
are recorded. However, deletions are necessary when
the trajectory of a moving object is no longer use-
ful. Deletions include deleting a particular segment
of a trajectory or deleting the whole trajectory of a
moving object.

A list of trajectory Ids with their associated level
file ‘Level’ and ‘zvalue’ is maintained in the track −
trajectory file. Given the trajectory id and the seg-
ment id, deleting a particular segment or deleting the
entire trajectory becomes straightforward. The dele-
tion process is illustrated in Algorithm 2. Deleting
trajectory segments from a data page changes the
life − time of the data page and hence the respec-
tive R ∗-tree indices need to be updated if the deleted
segment tuple changes the life − time of the data
page. The worst case scenario for deletion would re-

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

41

quire reading one disk page for each trajectory line
segment when retrieving a single trajectory. This is
due to the fact that the trajectory line segments are
organized based on the spatial and temporal relations,
which results in the trajectory line segments belong-
ing to a trajectory to be placed in different disk pages.
This is similar to the SETI structure; however, the
computational time for deletion in RPTI is reduced
by avoiding the splitting of line segments across par-
tition boundaries.

Algorithm 2: DeleteSegment

input: Trajectory id ‘tid’ of object ‘obj’
begin

Consult track − trajectory and retrieve the
tuple for the trajectory id, ‘tid’;
Retrieve the data page that holds the
segment tuple of trajectory ‘tid’ based on
the Level and zvalue;
old− lifetime← life time of retrieved data
page;
Delete all the segment tuple of ‘tid’ or a
particular segment of ‘tid’ if ‘sid’ is given;

end
new − lifetime← life time of data page after
deletion;
if old− lifetime 6= new − lifetime then

Consult the corresponding R ∗-tree based on
‘Level’ and ‘zvalue’;
Retrieve index entry old− lifetime and
update with new − lifetime;

end

4.3 Search

The search is executed in the following steps for the
coordinate-based queries.
Step 1: In the space dimension, the partitions that
intersect the query window are found for every level.
Step 2: At each level, for every partition that in-
tersects, the temporal index is searched based on the
temporal predicates and the relevant data pages are
retrieved. As mentioned earlier, the life-time of every
data page is maintained in the R ∗-tree.
Step 3: If the data pages that are retrieved belong
to the partitions that are completely inside the query
window, then all the trajectory id of the segments
that belong to the page are returned. Data pages
retrieved might have more than one segment belong-
ing to a trajectory, in which case the trajectory id
is returned only once. However, if the segment id is
needed, it can also be listed. When the data pages
belong to the partitions that are not completely inside
the query window, the spatial predicate is applied to
each segment tuple in the data page.

The search is done as illustrated in the steps above
and it produces the list of segments or trajectories
that overlap with the query window. The search pro-
cess of RPTI is quite similar to that of the SETI struc-
ture. However, the duplicate elimination that occurs
because of the splitting of line segments that cross
cell boundaries is not found in RPTI.

The search process for the trajectory-based
queries, where the whole or part of the trajectory is
retrieved, is straightforward and is illustrated in Al-
gorithm 3.

Algorithm 3: SearchTrajectory

input: Trajectory id ‘tid’ of object ‘obj’
begin

Consult track − trajectory and retrieve the
tuples for the trajectory id, ‘tid’;
Retrieve the data page that holds the
segment tuples of trajectory ‘tid’ based on
the Level and zvalue;
List all the segment tuples of ‘tid’ or a
particular segment of ‘tid’ if ‘sid’ is given;

end

Similar to the case of deletion, the worst case sce-
nario for trajectory-based queries would require read-
ing one disk page for each trajectory line segment
when retrieving a single trajectory. This is due to the
fact that the trajectory line segments are organized
based on spatial and temporal relations, which results
in the trajectory line segments belonging to a trajec-
tory needing to be placed in different disk pages. This
is similar to the SETI structure; however, the com-
putational time for trajectory-based queries in RPTI
is reduced by avoiding the splitting of line segments
across partition boundaries. The following section
provides the experimental results for the RPTI struc-
ture for both the coordinate and trajectory-based
queries.

5 Experiments and Results for RPTI

In order to assess the performance benefits of RPTI,
we compare it with our prototype implementation of
the SETI structure. The SETI structure performs
better than the three dimensional R-tree and the TB
tree for both the time-slice and time-interval queries
as described in [Chakka et al., 2003]. In the fol-
lowing, we present the experimental results for the
time-interval queries and trajectory queries. The ex-
periments were conducted on an IntelrCoreTM2 Duo
Processor at 2.00GHz that has the main memory ca-
pacity of 2.0GB. The Windows experience rating in-
dex for the processor is 4.7 out of 5.

Synthetic data sets are generated using the GSTD
generator of spatiotemporal datasets [Theodoridis
et al., 1999] to create trajectories of moving objects.
For a specified number of moving objects, the GSTD
data generator produces specified number of segments
per moving object. The number of trajectories for the
data sets is kept as 1K and for every trajectory the
number of segments is varied to form 5 GSTD data
sets. The total number of segment tuples for 5 GSTD
data sets are 4M, 8M, 12M, 16M and 20M respec-
tively and are represented as GSTD-4M, GSTD-8M,
GSTD-12M, GSTD-16M and GSTD-20M. The size
of the level files for the 5 GSTD data sets is 144MB,
288MB, 432MB, 576MB and 720MB respectively.

The number of partitions is restricted for the SETI
structure, as the splitting of line segments that cross
the spatial cell boundary degrades the performance of
the index. The recursive partitioning method in the
RPTI structure eliminates the problem of splitting
line segments by moving the line segments that cross
the boundary to a higher level. The RPTI method
performs better when the spatial dimension is parti-
tioned very finely, as the partitioning forces the line
segments that cross the boundary to be moved to the
higher level and this leads to a uniform distribution of
line segments at the lower levels. This is illustrated
in Figure 4. For the purpose of understanding the
distribution of line segments over level files, we have
plotted the average number of line segments per par-
tition for the data set of 1M line segments (number

CRPIT Volume 104 - Database Technologies 2010

42

of trajectories and the number of line segments per
trajectory is kept as 1K).

Figure 4: Distribution of Line Segments across Level Files for
Varying L (Level until the Recursive Partitioning is done)

5.1 Performance of Insertion

The experimental results for the insertion perfor-
mance of the GSTD data set with 4M segments
(GSTD-4M) is given in Figure 5. For the SETI struc-
ture, the insertion of line segments involves the split-
ting of line segments if they cross spatial cells. But for
the RPTI structure, the insertion is straightforward
and it involves the update of the track − trajectory
file if the trajectory id is not found in the file or if the
line segment falls in a new level or a new partition.

After the level files are generated and the time in-
dices are constructed, we present the performance of
inserting 1K segments as an average time for insert-
ing a single line segment. The result demonstrates
that the RPTI structure outperforms the SETI for
insertion, and that the reason for the increase in av-
erage time for the SETI is due to the splitting pro-
cess, which is eliminated in our recursive partitioning
method.

Figure 5: Insertion Performance

5.2 Time-interval Queries

The performance of RPTI for the time-interval
queries tends to be competitive with the SETI struc-
ture. The slight increase in computation time is be-
cause of the recursive partitioning of space in RPTI;
each level file needs to be checked for the relevant par-
titions. The number of partitions to be examined for
false positives is higher as the partitions that are not
completely enclosed by the query window tend to be

found in almost every level. The number of segments
per trajectory is varied and experiments were con-
ducted on the GSTD data set with 1K trajectories.
The query window in the experiments was chosen to
have 0.1% and 1.0% query selectivity. The total num-
ber of line segments in the data sets is 4M, 8M, 12M,
16M and 20M respectively. The results show that the
RPTI structure is competitive with the SETI for the
time-interval queries. Figures 6 and 7 illustrate the
results of the experiments by varying the number of
line segments per trajectory and the query window
size.

Figure 6: Time-interval Query Performance for 0.1% Query
Selectivity

Figure 7: Time-interval Query Performance for 1.0% Query
Selectivity

If the query window in the space dimension is
large, then almost every partition at the higher levels
intersects with the query window and this increases
the number of false positives. The duplicate elimina-
tion in the SETI structure results in further computa-
tion and this is eliminated in RPTI. Though the num-
ber of partitions for checking false positives is higher
in RPTI, the increase in computational time is com-
pensated by the elimination of duplicates.

5.3 Time-slice Queries

In this section, we provide the experimental results
of the time-slice query for the SETI and RPTI struc-
tures. Similar to the results of the time-interval query,
the increase in response time for RPTI is due to the
query window being executed at every level. However,
the results show that the RPTI structure is competi-
tive with the SETI. As already mentioned, the time-
slice query executes the range query in the space di-
mension with a zero extent in the time dimension.

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

43

Figure 8 illustrates the experimental results for the
time-slice queries. The number of segments per tra-
jectory is varied and experiments were conducted on
GSTD data set with 1K trajectories. The total num-
ber of line segments in the data sets is 4M, 8M, 12M,
16M and 20M respectively. During the search pro-
cess, if the data pages belong to the partitions that
are not completely inside the query window, the spa-
tial predicate is applied to each segment tuple in the
data page.

The number of partitions that are not completely
inside the query window is high for the RPTI struc-
ture, as the area of the partition is large in the higher
levels. Almost every partition in the higher levels
tends to intersect the query window and, hence, the
spatial predicate is applied to each segment tuple in
the level files at the higher level. When the query
window size is of 0.01% selectivity, the results of the
RPTI and SETI tend to be similar. As with the
time-interval queries, the time-slice query requires the
look-up of partitions at every level and this results in
the slight increase in response time of the RPTI over
the SETI.

However, the performance of the RPTI greatly de-
pends on the query window size and the position of
the query window. The variation in the number of
partitions that will be for false positives at every level
is dependent on the query window size and the po-
sition of the query window. The results shown in
Figure 8 are for the query window size of 0.01% se-
lectivity, however there might be an increase in the
response time of RPTI if the query window size is
large.

Figure 8: Time-slice Query Performance for 0.01% Query
Selectivity

5.4 Trajectory-based Queries

The RPTI structure performs better than the SETI
structure for the trajectory queries, as the search pro-
cess for retrieving the segments of the trajectory is
quite straightforward. The SETI structure, however,
requires the search process that involves duplicate
elimination.

We also present the performance of the RPTI
structure for trajectory queries by varying the num-
ber of moving object trajectories in the data set. The
number of moving objects varies from 40K to 160K
and the number of segments per moving object is
kept as 100. The number of segments in the data set
ranges from 4M to 16M. We present the response time
of the retrieving segment id of 100 trajectories given
the trajectory id. The experimental results show that
the RPTI structure is better in answering trajectory-
based queries than the SETI, as is illustrated in Fig-
ure 9. For a fair comparison, we maintained a sepa-

rate file for SETI, similar to the track − trajectory
in the RPTI, that keeps track of the cells associated
with a trajectory.

Figure 9: Trajectory Query Performance Scaling with the
Number of Moving Objects

Deletion of trajectories is similar to trajectory
queries where the whole or part of the trajectory is re-
trieved based on the trajectory id and, as mentioned
earlier, the response time for deletion using the RPTI
structure is less compared to the SETI. Deletion of
trajectories in SETI involves deleting the line seg-
ments that cross the boundary twice and updating the
R ∗-tree twice if the deletion changes the life− time
of the data pages.

The only design parameters required are the stan-
dard disk page size and maximum level of recursive
partitioning. However, in SETI, the number of spa-
tial partitions, which is a crucial parameter in any
spatial partitioning strategy, is highly dependent on
the distribution of data sets.

6 Conclusion

We have discussed the use of the recursive partition-
ing technique for trajectory indexing. Similar to the
SETI structure, the RPTI decouples the space and
time dimension. Contrary to the SETI structure,
the RPTI recursively partitions the space and keeps
track of the segments of a trajectory. Hence, the
RPTI is better than SETI in handling trajectory-
based queries and is competitive with the SETI in
handling coordinate-based queries. The R-tree struc-
ture or its variations can be used to index the time
dimension at every level. As, the RPTI is efficient in
retrieving all the segments of the trajectory, deletion
of trajectories is efficiently done. The time-interval
queries require the look-up of partitions at every level
and the structure increases the number of false posi-
tives during the search process. Hence, the response
time of the RPTI for time-interval queries and time-
slice queries is slightly higher than the SETI. The
structure of the RPTI can be easily implemented by
using any of the existing spatial indexing structures.

Acknowledgements

This work is sponsored in part by National ICT Aus-
tralia (NICTA).

References

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schnei-
der, and Bernhard Seeger. The r*-tree: An efficient
and robust access method for points and rectangles.

CRPIT Volume 104 - Database Technologies 2010

44

In Proceedings of the 1990 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
322–331, Atlantic City, NJ, May 1990. ACM Press.

Jon Louis Bentley and Jerome H. Friedman. Data
structures for range searching. ACM Computing
Survey, 11(4):397–409, 1979.

Stefan Berchtold, Christian Böhm, and Hans-Peter
Kriegel. The pyramid-technique: Towards breaking
the curse of dimensionality. Proceedings ACM SIG-
MOD International Conference on Management of
Data, pages 142–153, June 1998.

V. Prasad Chakka, Adam Everspaugh, and Jig-
nesh M. Patel. Indexing large trajectory data sets
with seti. In In Proceedings of Conference on In-
novative Data Systems Research (CIDR), 2003.

Douglas Comer. The ubiquitous b-tree. ACM Com-
puting Survey, 11(2):121–137, 1979.

Victor Teixeira de Almeida and Ralf Hartmut Güting.
Indexing the trajectories of moving objects in net-
works. Geoinformatica, 9(1):33–60, 2005.

Martin Erwig and Markus Schneider. STQL – A
Spatio-Temporal Query Language, chapter 6. Min-
ing Spatio-Temporal Information Systems. Kluwer
Academic Publishers, 2002.

Elias Frentzos. Indexing objects moving on fixed net-
works. In In Proceedings of the 8th International
Symposium on Spatial and Temporal Databases
(SSTD), pages 289–305, Santorini Island, Greece,
July 2003. Springer.

Ralf Hartmut Güting, Michael H. Böhlen, Martin
Erwig, Christian S. Jensen, Nikos A. Lorentzos,
Markus Schneider, and Michalis Vazirgiannis. A
foundation for representing and querying moving
objects. ACM Transactions on Database Systems,
25(1):1–42, 2000.

Antonin Guttman. R-trees: A dynamic index struc-
ture for spatial searching. SIGMOD’84, Proceed-
ings of Annual Meeting, pages 47–57, June 1984.

Ibrahim Kamel and Christos Faloutsos. Hilbert r-
tree: An improved r-tree using fractals. In VLDB
’94: Proceedings of the 20th International Confer-
ence on Very Large Data Bases, pages 500–509,
Santiago de Chile, Chile, September 1994. Morgan
Kaufmann.

George Kollios, Dimitrios Gunopulos, and Vassilis J.
Tsotras. On indexing mobile objects. In PODS
’99: Proceedings of the eighteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of
database systems, pages 261–272, Philadelphia,
Pennsylvania, June 1999. ACM Press.

Yannis Manolopoulos, Alexandros Nanopoulos, and
Apostolos N. Papadopoulos. R-Trees: Theory and
Applications (Advanced Information and Knowl-
edge Processing). Springer, 1 edition, September
2005. ISBN 1852339772.

Jack A. Orenstein and T. H. Merrett. A class of data
structures for associative searching. In PODS ’84:
Proceedings of the Third ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems,
pages 181–190, Waterloo, Ontario, Canada, April
1984. ACM.

Dimitris Papadias, Yufei Tao, Panos Kalnis, and Jun
Zhang. Indexing spatio-temporal data warehouses.
In Proceedings of 18th International Conference
on Data Engineering (ICDE), pages 166–175, San
Jose, CA, March 2000. IEEE Computer Society.

Dieter Pfoser, Christian S. Jensen, and Yannis
Theodoridis. Novel approaches in query process-
ing for moving object trajectories. In VLDB 2000:
Proceedings of the 26th International Conference
on Very Large Data Bases, pages 395–406, Cairo,
Egypt, September 2000. Morgan Kaufmann.

Evaggelia Pitoura and George Samaras. Locating ob-
jects in mobile computing. IEEE Transactions on
Knowledge and Data Engineering, 13(4):571–592,
2001.

Simonas Saltenis, Christian S. Jensen, Scott T.
Leutenegger, and Mario A. Lopez. Indexing the
positions of continuously moving objects. In Pro-
ceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 331–
342, Dallas, Texas, USA, May 2000. ACM.

Hanan Samet. Modern database systems: The ob-
ject model, interoperability, and beyond. In Mod-
ern Database Systems. ACM Press and Addison-
Wesley, 1995. ISBN 0-201-59098-0.

Timos K. Sellis, Nick Roussopoulos, and Christos
Faloutsos. The r+-tree: A dynamic index for multi-
dimensional objects. In VLDB ’87: Proceedings of
the 13th International Conference on Very Large
Data Bases, pages 507–518, Brighton, England,
September 1987. Morgan Kaufmann.

Yannis Theodoridis, Michalis Vazirgiannis, and
Timos K. Sellis. Spatio-temporal indexing for large
multimedia applications. In ICMCS ’96: Proceed-
ings of the 1996 International Conference on Mul-
timedia Computing and Systems, pages 441–448,
1996.

Yannis Theodoridis, Jefferson R. O. Silva, and
Mario A. Nascimento. On the generation of spa-
tiotemporal datasets. In Proceedings of the 6th
International Symposium on Advances in Spatial
Databases, pages 147–164, Hong Kong, China, July
1999. Springer.

Andy Ward and Alan Jones. A new location technique
for the active office. IEEE Personal Communica-
tions, 4(5):42–47, 1997.

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

45

